系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3568-3573.doi: 10.12305/j.issn.1001-506X.2025.11.06

• 电子技术 • 上一篇    

基于熵权-可信度因子的舰船细粒度分类方法

张小舟(), 贾振俊(), 郭晓云()   

  1. 北京机电工程研究所,北京 100074
  • 收稿日期:2025-02-18 接受日期:2025-07-22 出版日期:2025-11-25 发布日期:2025-12-08
  • 通讯作者: 郭晓云 E-mail:zxzhou@petalmail.com;jiazhenjunBH@163.com;gxy1@139.com
  • 作者简介:张小舟(1999—),女,硕士研究生,主要研究方向为多源信息融合、多智能体协同精确定位
    贾振俊(1996—),男,工程师,硕士,主要研究方向为多源信息融合、目标定位、协同导航

Method for fine-grained ship classification based on entropy weight and certainty factor

Xiaozhou ZHANG(), Zhenjun JIA(), Xiaoyun GUO()   

  1. Beijing Institute of Mechanical and Electrical Engineering,Beijing 100074,China
  • Received:2025-02-18 Accepted:2025-07-22 Online:2025-11-25 Published:2025-12-08
  • Contact: Xiaoyun GUO E-mail:zxzhou@petalmail.com;jiazhenjunBH@163.com;gxy1@139.com

摘要:

针对多载荷协同完成舰船目标细粒度分类任务,考虑载荷访问周期不一致问题,提出一种基于熵权-可信度模型的舰船目标细粒度分类方法。在历史信息的支持下,依据信息熵权评估多个电子/成像探测载荷的不确定性,进而建立基于加权合成法则的可信度模型。该算法结合区域历史态势,解决探测窗口交错造成的推理中断问题,实现跨模态信息决策级融合。6类舰船目标细粒度分类任务中,所提方法的准确率达到91%,具有较好准确性和鲁棒性。

关键词: 信息融合, 细粒度分类, 电子探测, 成像探测

Abstract:

For the fine-grained ship target classification in multi-payload collaborative detection task, considering the various revisit time of payloads, a method based on entropy weight and credibility model for fine grained classification of ship targets is proposed. With the support of historical information, the uncertainty of multiple electronic/imaging detection payloads are evaluated through entropy weight.Then, a certainty factor model is established based on weighted synthesis rules. The proposed method solves the interruption of reasoning issues caused by intersection of detection windows via combininng regional historical situation, achieving decision-level cross-modal information fusion. In the fine-grained classification task involving six categories of ship targets, the accuracy of the proposed method achieves 91%, demonstrating satisfactory accuracy and robustness.

Key words: information fusion, fine-grained classification, eletronic detection, imaging detection

中图分类号: