系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1975-1984.doi: 10.12305/j.issn.1001-506X.2025.06.25

• 制导、导航与控制 • 上一篇    下一篇

低轨质量矩航天器姿态动力学与气动补偿控制

陆正亮, 李镓彤, 胡远东, 廖文和   

  1. 南京理工大学机械工程学院, 江苏 南京 210094
  • 收稿日期:2024-09-26 出版日期:2025-06-25 发布日期:2025-07-09
  • 通讯作者: 胡远东
  • 作者简介:陆正亮 (1990—), 男, 副研究员, 博士, 主要研究方向为微纳卫星导航制导与控制分系统设计
    李镓彤 (1999—), 男, 硕士研究生, 主要研究方向为微纳卫星姿态控制
    胡远东 (1995—), 男, 博士后, 主要研究方向为微纳卫星姿轨控制系统
    廖文和 (1965—), 男, 教授, 博士, 主要研究方向为微小卫星总体应用

Attitude dynamics and aerodynamic compensation control of low-orbit mass moment spacecraft

Zhengliang LU, Jiatong LI, Yuandong HU, Wenhe LIAO   

  1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2024-09-26 Online:2025-06-25 Published:2025-07-09
  • Contact: Yuandong HU

摘要:

针对气动偏心力矩严重干扰超低轨卫星姿态控制性能的问题, 提出一种基于质量矩技术的微纳卫星气动干扰力矩自适应动态补偿控制方法, 实现对气动偏心力矩的精确观测与快速补偿。针对基于滚珠丝杠副的质量矩驱动方式, 考虑机构传动摩擦, 建立质量矩卫星转动、平动和执行机构平动的完整动力学模型, 明确各项参数对扰动力矩的影响。针对气动环境不确定和卫星质心未知问题, 设计基于径向基函数(radial basis function, RBF)干扰观测器、滑模控制器与积分分离式比例-积分-微分(proportional-integral-derivation, PID)控制器的自适应动态补偿方案。仿真结果表明, 所提补偿控制方法能够精确估计并补偿气动力矩干扰, 有效消除质量矩机构摩擦力影响, 验证了气动补偿控制方法的有效性。

关键词: 超低轨卫星, 姿态控制, 气动力矩, 摩擦特性, 滑模控制

Abstract:

Aiming at the serious interference of aerodynamic eccentric moment on the attitude control performance of ultra-low Earth orbit satellites, an adaptive dynamic compensation control method for micro-nano satellites based on mass moment technology is proposed. For the mass moment drive method based on ball screw pairs, considering the mechanism transmission friction, a complete dynamic model of mass moment satellite rotation, translation, and actuator translation is established to clarify the influence of various parameters on disturbance moment. To address the uncertainties in the aerodynamic environment and the unknown center of mass of the satellite, an adaptive dynamic compensation scheme is designed, which includes a radial basis function (RBF)-based disturbance observer, a sliding mode controller, and an integral separated proportional-integral-derivation (PID) controller. Simulation results show that the proposed compensation control method can accurately estimate and compensate for aerodynamic moment disturbances and effectively eliminate the influence of friction in the mass moment mechanism, and validate the effectiveness of the proposed aerodynamic compensation control method.

Key words: ultra-low Earth orbit satellite, attitude control, aerodynamic moment, friction characteristics, sliding mode control

中图分类号: