1 |
ZHANG Z L , YU J C , TANG J H , et al. MR-TopoMap: multi-robot exploration based on topological map in communication restricted environment[J]. IEEE Robotics and Automation Letters, 2022, 7 (4): 10794- 10801.
doi: 10.1109/LRA.2022.3192765
|
2 |
GAO Y , YANG S B , LIU X L . Drogue position measurement of autonomous aerial refueling based on embedded system[J]. Sensors and Actuators A-Physical, 2023, 353, 114251.
doi: 10.1016/j.sna.2023.114251
|
3 |
刘延钊, 黄志球, 沈国华, 等. 基于决策树和BN的自动驾驶车辆行为决策方法[J]. 系统工程与电子技术, 2022, 44 (10): 3143- 3154.
doi: 10.12305/j.issn.1001-506X.2022.10.18
|
|
LIU Y Z , HUANG Z Q , SHEN G H , et al. Behavioral decision-making methods of autonomous vehicles based on decision tree and BN[J]. Systems Engineering and Electronics, 2022, 44 (10): 3143- 3154.
doi: 10.12305/j.issn.1001-506X.2022.10.18
|
4 |
王祥科, 李迅, 郑志强. 多智能体系统编队控制相关问题研究综述[J]. 控制与决策, 2013, 28 (11): 1601- 1613.
|
|
WANG X K , LI X , ZHENG Z Q . Survey of developments on multi-agent formation control related problems[J]. Control and Decision, 2013, 28 (11): 1601- 1613.
|
5 |
OH K K , PARK M C , AHN H S . A survey of multi-agent formation control[J]. Automatica, 2015, 53, 424- 440.
doi: 10.1016/j.automatica.2014.10.022
|
6 |
SUN Z , ANDERSON B D O , DEGHAT M , et al. Rigid formation control of double-integrator systems[J]. International Journal of Control, 2016, 90 (7): 1403- 1419.
|
7 |
BAE Y B , LIM Y H , AHN H S . Distributed robust adaptive gradient controller in distance-based formation control with exogenous disturbance[J]. IEEE Trans. on Automatic Control, 2021, 6 (6): 2868- 2884.
|
8 |
KWON S H , SUN Z , ANDERSON B D O , et al. Sign rigidity theory and application to formation specification control[J]. Automatica, 2022, 141, 110291.
doi: 10.1016/j.automatica.2022.110291
|
9 |
DE-MARINA H G . Maneuvering and robustness issues in undirected displacement-consensus-based formation control[J]. IEEE Trans. on Automatic Control, 2020, 66 (7): 3370- 3377.
|
10 |
LI X L , WEN C Y , CHEN C . Adaptive formation control of networked robotic systems with bearing-only measurements[J]. IEEE Trans. on Cybernetics, 2021, 51 (1): 199- 209.
doi: 10.1109/TCYB.2020.2978981
|
11 |
TRINH M H , VAN-TRAN Q , VAN-VU D , et al. Robust tracking control of bearing-constrained leader-follower formation[J]. Automatica, 2021, 131, 109733.
doi: 10.1016/j.automatica.2021.109733
|
12 |
谭瑶, 梅杰. 利用方位角信息的移动机器人编队控制[J]. 控制与决策, 2021, 38 (7): 1043- 1050.
|
|
TAN Y , MEI J . Formation control of mobile robots using bearing-only measurements[J]. Control and Decision, 2021, 38 (7): 1043- 1050.
|
13 |
ANTONELLI G , ARRICHIELLO F , CACCAVALE F , et al. Decentralized time-varying formation control for multi-robot systems[J]. The International Journal of Robotics Research, 2014, 33 (7): 1029- 1043.
doi: 10.1177/0278364913519149
|
14 |
YANG Q K, CAO M, FANG H, et al. Weighted centroid tracking control for multi-agent systems[C]//Proc. of the IEEE 55th Conference on Decision and Control, 2016: 939-944.
|
15 |
YANG Q K , CAO M , MARINA H G , et al. Distributed formation tracking using local coordinate systems[J]. Systems & Control Letters, 2018, 111, 70- 78.
|
16 |
SUN Y B , ZOU Y , HE X Y , et al. Distributed formation centroid tracking control of clustered rotorcraft[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (2): 1867- 1878.
|
17 |
CHEN Y Y , CHEN K W , ASTOLFI A . Adaptive formation tracking control for first-order agents with a time-varying flow parameter[J]. IEEE Trans. on Automatic Control, 2022, 67 (5): 2481- 2488.
doi: 10.1109/TAC.2021.3074900
|
18 |
DIAZ Y , DAVILA J , MERA M . Leader-follower formation of unicycle mobile robots using sliding mode control[J]. IEEE Control Systems Letters, 2023, 7, 883- 888.
doi: 10.1109/LCSYS.2022.3227578
|
19 |
YUSUF K , KAMESH S , NICHOLAS R G , et al. Distributed backstepping based control of multiple UAV formation flight subject to time delays[J]. IET Control Theory & Applications, 2020, 14 (12): 1628- 1638.
|
20 |
SILVA A L , SANTOS D A . Fast nonsingular terminal sliding mode flight control for multirotor aerial vehicles[J]. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (6): 4288- 4299.
doi: 10.1109/TAES.2020.2988836
|
21 |
POLYAKOV A . Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Trans. on Automatic Control, 2012, 57 (8): 2106- 2110.
doi: 10.1109/TAC.2011.2179869
|
22 |
WANG N , LI H . Leader-follower formation control of surface vehicles: a fixed-time control approach[J]. ISA Transactions, 2022, 124, 356- 364.
doi: 10.1016/j.isatra.2020.05.042
|
23 |
白嘉琪, 王彦恺, 邢昊. 无人艇与四旋翼无人机固定时间异构编队控制[J]. 系统工程与电子技术, 2023, 45 (4): 1152- 1163.
doi: 10.12305/j.issn.1001-506X.2023.04.24
|
|
BAI J Q , WANG Y K , XING H . Fixed-time heterogeneous formation control of unmanned boats and quadrotor unmanned aerial vehicle[J]. Systems Engineering and Electronics, 2023, 45 (4): 1152- 1163.
doi: 10.12305/j.issn.1001-506X.2023.04.24
|
24 |
MESBAHI M . Graph theoretic methods in multiagent networks[M]. New Jersey: Princeton University Press, 2010.
|
25 |
OLFATI-SABER R , MURRAY R M . Consensus problems in networks of agents with switching topology and timedelays[J]. IEEE Trans. on Automatic Control, 2004, 49 (9): 1520- 1533.
doi: 10.1109/TAC.2004.834113
|
26 |
PARSEGOV S E , POLYAKOV A E , SHCHERBAKOV P S . Fixed-time consensus algorithm for multi-agent systems with integrator dynamics[J]. IFAC Proceedings Volumes, 2013, 46 (27): 110- 115.
doi: 10.3182/20130925-2-DE-4044.00055
|
27 |
ZUO Z Y . Nonsingular fixed-time consensus tracking for second-order multi-agent networks[J]. Automatica, 2015, 54, 305- 309.
doi: 10.1016/j.automatica.2015.01.021
|
28 |
HARDY G H , LITTLEWOOD J E , POLYA G . Inequalities[M]. Cambridge: Cambridge University Press, 1988.
|
29 |
MOHAR B . The Laplacian spectrum of graphs[J]. Graph Theory, Combinatorics and Applications, 1991, 2, 871- 898.
|
30 |
MOULAY E , LECHAPPE V , BERNUAU E , et al. Robust fixed-time stability: application to sliding-mode control[J]. IEEE Trans. on Automatic Control, 2022, 67 (2): 1061- 1066.
doi: 10.1109/TAC.2021.3069667
|