Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1346-1356.doi: 10.12305/j.issn.1001-506X.2024.04.23
• Systems Engineering • Previous Articles Next Articles
Gang LIU1, Zhibiao AN1, Maojun ZHANG2, Yu LIU2, Wu LI3,*
Received:
2023-03-02
Online:
2024-03-25
Published:
2024-03-25
Contact:
Wu LI
CLC Number:
Gang LIU, Zhibiao AN, Maojun ZHANG, Yu LIU, Wu LI. Subject objective path planning algorithm based on continuous road network environment[J]. Systems Engineering and Electronics, 2024, 46(4): 1346-1356.
Table 2
Comparison of algorithm results under different maps"
地图尺寸/m | 经历的节点数 | 搜索时间/s | 路径长度/m | ||||||||
文献[ | MCE-A*算法 | MCESO-A*算法 | 文献[ | MCE-A*算法 | MCESO-A*算法 | 文献[ | MCE-A*算法 | MCESO-A*算法 | |||
100×100 | 364 | 345 | 547 | 1.353 1 | 0.149 3 | 0.132 6 | 582.45 | 509.36 | 843.82 | ||
250×250 | 802 | 781 | 829 | 2.307 2 | 0.262 4 | 0.229 2 | 1 126.18 | 1 067.58 | 1 292.26 | ||
500×500 | 765 | 680 | 1 321 | 4.808 2 | 0.562 8 | 0.525 8 | 1 436.28 | 1 386.73 | 1 868.76 | ||
750×750 | 3 358 | 3 287 | 3 536 | 6.482 4 | 2.615 9 | 1.450 4 | 4 792.63 | 4 745.84 | 4 409.34 | ||
1 500×1 500 | 6 924 | 5 655 | 8 716 | 9.547 5 | 3.974 8 | 2.387 2 | 8 290.12 | 7 266.2 | 1 1675.88 |
Table 3
Comparison of time results for different algorithms s"
地图尺寸/m | MCE-A* | MCESO-A* | MCESO-RNP-A* | 双向MCESO-RNP-A* |
100×100 | 0.149 3 | 0.132 6 | 0.189 4 | 0.125 9 |
250×250 | 0.262 4 | 0.229 2 | 0.464 9 | 0.365 8 |
500×500 | 0.562 8 | 0.525 8 | 0.621 1 | 0.431 4 |
750×750 | 2.615 9 | 1.450 4 | 1.033 9 | 0.697 2 |
1 500×1 500 | 3.974 8 | 2.387 2 | 1.795 3 | 1.326 9 |
1 | 周梦如, 陈慧岩, 熊光明, 等. 越野环境下无人履带平台的道路可通行性分析[J]. 兵工学报, 2022, 43 (10): 2485- 2496. |
ZHOU M R , CHEN H Y , XIONG G M , et al. Road traversability analysis of unmanned tracked platform in off-road environment[J]. Acta Armamentarii, 2022, 43 (10): 2485- 2496. | |
2 |
PAPADAKIS P . Terrain traversability analysis methods for unmanned ground vehicles: a survey[J]. Engineering Applications of Artificial Intelligence, 2013, 26 (4): 1373- 1385.
doi: 10.1016/j.engappai.2013.01.006 |
3 | HOSSEINPOOR S, TORRESEN J, MANTELLI M, et al. Traversability analysis by semantic terrain segmentation for mobile robots[C]//Proc. of the IEEE 17th International Conference on Automation Science and Engineering, 2021: 1407-1413. |
4 |
ALIREZA M , VINCENT D , TONY W . Experimental study of path planning problem using EMCOA for a holonomic mobile robot[J]. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1450- 1462.
doi: 10.23919/JSEE.2021.000123 |
5 |
YAO X L , WANG F , WANG J F , et al. Bilevel optimization-based time-optimal path planning for AUVs[J]. Sensors, 2018, 18 (12): 4167- 4183.
doi: 10.3390/s18124167 |
6 |
LOZANO-PEREZ T , WESLEY M A . An algorithm for planning collision-free paths among polyhedral obstacles[J]. Communications of the ACM, 1979, 22 (10): 560- 570.
doi: 10.1145/359156.359164 |
7 | 马随阳, 余永周, 吕英豪. 动态规划算法对航道岸线中无人机测绘路径的优化[J]. 中国水运, 2022, 22 (10): 76- 78. |
MA S Y , YU Y Z , LYU Y H . Optimisation of UAV mapping paths in fairway shorelines by dynamic programming algorithms[J]. China Water Transport, 2022, 22 (10): 76- 78. | |
8 | 彭小丹. 改进可视图的路径规划算法[J]. 现代信息科技, 2021, 5 (3): 152-154, 158. |
PENG X D . Improved visibility graph path planning algorithm[J]. Modern Information Technology, 2021, 5 (3): 152-154, 158. | |
9 | 贾正荣, 王航宇, 卢发兴. 基于障碍凸化的改进环流APF路径规划[J]. 航空学报, 2019, 40 (10): 254- 268. |
JIA Z R , WANG H Y , LU F X . Improved circulating APF route planning based on obstacle convexification[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40 (10): 254- 268. | |
10 |
NIU H , SAVVARIS A , TSOURDOS A , et al. Voronoi-visibility roadmap-based path planning algorithm for unmanned surface vehicles[J]. The Journal of Navigation, 2019, 72 (4): 850- 874.
doi: 10.1017/S0373463318001005 |
11 | 朱建阳, 张旭阳, 蒋林, 等. 基于骨架关键点重规划的Voronoi图法路径规划[J]. 农业机械学报, 2022, 53 (3): 215-224, 250. |
ZHU J Y , ZHANG X Y , JIANG L , et al. Voronoi diagram path planning based on skeleton key points replanning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (3): 215-224, 250. | |
12 |
LIU C G , MAO Q Z , CHU X M , et al. An improved A-star algorithm considering water current, traffic separation and berthing for vessel path planning[J]. Applied Sciences, 2019, 9 (6): 1057- 1074.
doi: 10.3390/app9061057 |
13 |
LUO M , HOU X R , YANG J . Surface optimal path planning using an extended Dijkstra algorithm[J]. IEEE Access, 2020, 8, 147827- 147838.
doi: 10.1109/ACCESS.2020.3015976 |
14 | 李文刚, 汪流江, 方德翔, 等. 联合A* 与动态窗口法的路径规划算法[J]. 系统工程与电子技术, 2021, 43 (12): 3694- 3702. |
LI W G , WANG L J , FANG D X , et al. Path planning algotithm combining A* with DWA[J]. Systems Engineering and Electronics, 2021, 43 (12): 3694- 3702. | |
15 | 张浩杰, 张玉东, 梁荣敏, 等. 改进A* 算法的机器人能耗最优路径规划方法[J]. 系统工程与电子技术, 2023, 45 (2): 513- 520. |
ZHANG H J , ZHANG Y D , LIANG R M , et al. Energy-efficient path planning method for robots based on improved A* algorithm[J]. Systems Engineering and Electronics, 2023, 45 (2): 513- 520. | |
16 | 张伟民, 张月, 张辉. 基于改进A* 算法的煤矿救援机器人路径规划[J]. 煤田地质与勘探, 2022, 50 (12): 185- 193. |
ZHANG W M , ZHANG Y , ZHANG H . Path planning of coal mine rescue robote based on improved A* algorithm[J]. Coal Geology & Exploration, 2022, 50 (12): 185- 193. | |
17 |
TANG G , TANG C Q , CLARAMUNT C , et al. Geometric A-star algorithm: an improved A-star algorithm for AGV path planning in a port environment[J]. IEEE Access, 2021, 9, 59196- 59210.
doi: 10.1109/ACCESS.2021.3070054 |
18 | 刘钢, 老松杨, 袁灿, 等. 反舰导弹航路规划的OACRR-PSO算法[J]. 自动化学报, 2012, 38 (9): 1528- 1537. |
LIU G , LAO S Y , YUAN C , et al. OACRR-PSO algorithm for anti-ship missile path planning[J]. Acta Automatica Sinica, 2012, 38 (9): 1528- 1537. | |
19 |
LUO Q , WANG H B , ZHENG Y , et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing Applications, 2020, 32 (6): 1555- 1566.
doi: 10.1007/s00521-019-04172-2 |
20 |
ZHANG L Y , ZHANG R X . Research on UAV cloud control system based on ant colony algorithm[J]. Journal of Systems Engineering and Electronics, 2022, 33 (4): 805- 811.
doi: 10.23919/JSEE.2022.000080 |
21 |
LAMINI C , BENHLIMA S , ELBEKRI A . Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science, 2018, 127, 180- 189.
doi: 10.1016/j.procs.2018.01.113 |
22 |
LIANG S B , JIAO T T , DU W C , et al. An improved ant co-lony optimization algorithm based on context for tourism route planning[J]. PLoS One, 2021, 16 (9): e0257317.
doi: 10.1371/journal.pone.0257317 |
23 |
LIN Z N , YUE M , CHEN G Y , et al. Path planning of mobile robot with PSO-based APF and fuzzy-based DWA subject to moving obstacles[J]. Transactions of the Institute of Measurement, 2022, 44 (1): 121- 132.
doi: 10.1177/01423312211024798 |
24 |
XU B J , ZHAO K X , LUO Q Z , et al. A GV-drone arc routing approach for urban traffic patrol by coordinating a ground vehicle and multiple drones[J]. Swarm Evolutionary Computation, 2023, 77, 101246.
doi: 10.1016/j.swevo.2023.101246 |
25 | LIU H , LI X M , FAN M F , et al. An autonomous path planning method for unmanned aerial vehicle based on a tangent intersection and target guidance strategy[J]. IEEE Trans.on Intelligent Transportation Systems, 2020, 23 (4): 3061- 3073. |
26 | LIU H , LI X M , WU G H , et al. An iterative two-phase optimization method based on divide and conquer framework for integrated scheduling of multiple UAVs[J]. IEEE Trans.on Intelligent Transportation Systems, 2020, 22 (9): 5926- 5938. |
27 |
YANG Y , LI J T , PENG L L . Multi-robot path planning based on a deep reinforcement learning DQN algorithm[J]. CAAI Transactions on Intelligence Technology, 2020, 5 (3): 177- 183.
doi: 10.1049/trit.2020.0024 |
28 | LEI X Y , ZHANG Z A , DONG P F . Dynamic path planning of unknown environment based on deep reinforcement learning[J]. Journal of Robotics, 2018, 5781591. |
29 |
GUO S Y , ZHANG X G , ZHENG Y S , et al. An autonomous path planning model for unmanned ships based on deep reinforcement learning[J]. Sensors, 2020, 20 (2): 426- 461.
doi: 10.3390/s20020426 |
30 | WANG B Y , LIU Z , LI Q B , et al. Mobile robot path planning in dynamic environments through globally guided reinforcement learning[J]. IEEE Robotics, 2020, 5 (4): 6932- 6939. |
31 | 杨清清, 高盈盈, 郭玙, 等. 基于深度强化学习的海战场目标搜寻路径规划[J]. 系统工程与电子技术, 2022, 44 (11): 3486- 3495. |
YANG Q Q , GAO Y Y , GUO Y , et al. Target search path planning for naval battel field based on deep reinforcement learning[J]. Systems Engineering and Electronics, 2022, 44 (11): 3486- 3495. | |
32 | 闫星宇, 杜伟伟, 石昊. 基于通行性分析的分层越野路径规划方法[J]. 火力与指挥控制, 2022, 47 (5): 153- 158. |
YAN X Y , DU W W , SHI H . Research on hierarchical off-road path planning method based on trafficability analysis[J]. Fire Control and Command Control, 2022, 47 (5): 153- 158. |
[1] | Guixiang ZHAO, Jian ZHOU, Yunmiao LI, Chenxu WANG. Improved bi-directional rapidly-exploring random tree path planning for USV [J]. Systems Engineering and Electronics, 2024, 46(4): 1364-1371. |
[2] | Zihao CHEN, Juan LI, Chang LIU, Jie LI, Xiaoyu LIU. Task planning method for coordinated attacks on ground targets under time constraints [J]. Systems Engineering and Electronics, 2023, 45(8): 2353-2360. |
[3] | Guangqiang LI, Wenchao DONG, Daqing ZHU, Yue YU, Hao CHEN, Shuanghe YU. 3D path planning for AUV based on improved whaleoptimization algorithm [J]. Systems Engineering and Electronics, 2023, 45(7): 2170-2182. |
[4] | Liyao WU, Xichao SU, Lei WANG, Zishuang PAN. Research of formation rendezvous control for manned/unmanned aerial vehicles formation [J]. Systems Engineering and Electronics, 2023, 45(7): 2192-2202. |
[5] | Yao LIU, Yangsheng XIA, Jianmai SHI, Chao CHEN, Jincai HUANG. Path planning method for multi-area coverage by cooperated ground vehicle multi-drone [J]. Systems Engineering and Electronics, 2023, 45(5): 1380-1390. |
[6] | Qinglu WANG, Fengguo WU, Chengchen ZHENG, Hui LI. UAV path planning based on optimized artificial potential field method [J]. Systems Engineering and Electronics, 2023, 45(5): 1461-1468. |
[7] | Wei HAN, Zixuan LIU, Xichao SU, Kaikai CUI, Jie LIU. Deck path planning algorithm of carrier-based aircraft based on heuristic and optimal control [J]. Systems Engineering and Electronics, 2023, 45(4): 1098-1110. |
[8] | Haojie ZHANG, Yudong ZHANG, Rongmin LIANG, Tiantian YANG. Energy-efficient path planning method for robots based on improved A* algorithm [J]. Systems Engineering and Electronics, 2023, 45(2): 513-520. |
[9] | Jingyu WU, Shiqiang ZHU, Wei SONG, Haolei SHI, Zenan WU. Coverage path planning based on improved cellular decomposition [J]. Systems Engineering and Electronics, 2023, 45(12): 3949-3957. |
[10] | Guixiang ZHAO, Chenxu WANG, Heping WANG, Yunmiao LI. Local path planning for unmanned surface vehicle using improved velocity obstacle method [J]. Systems Engineering and Electronics, 2023, 45(12): 3975-3983. |
[11] | Zhi REN, Dong ZHANG, Shuo TANG. Improved three-dimensional A* algorithm of real-time path planning based on reinforcement learning [J]. Systems Engineering and Electronics, 2023, 45(1): 193-201. |
[12] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. |
[13] | Dou CHEN, Xiuyun MENG. UAV offline path planning based on self-adaptive coyote optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(2): 603-611. |
[14] | Yang YIN, Quanshun YANG, Zheng WANG, Yang LIU. USV cluster coverage search method with communication distance constraint [J]. Systems Engineering and Electronics, 2022, 44(12): 3821-3828. |
[15] | Qingqing YANG, Yingying GAO, Yu GUO, Boyuan XIA, Kewei YANG. Target search path planning for naval battle field based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(11): 3486-3495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||