Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (12): 3975-3983.doi: 10.12305/j.issn.1001-506X.2023.12.28
• Guidance, Navigation and Control • Previous Articles
Guixiang ZHAO, Chenxu WANG, Heping WANG, Yunmiao LI
Received:
2022-12-29
Online:
2023-11-25
Published:
2023-12-05
Contact:
Chenxu WANG
CLC Number:
Guixiang ZHAO, Chenxu WANG, Heping WANG, Yunmiao LI. Local path planning for unmanned surface vehicle using improved velocity obstacle method[J]. Systems Engineering and Electronics, 2023, 45(12): 3975-3983.
1 |
WANG J , WANG R T , LU D H , et al. USV Dynamic accurate obstacle avoidance based on improved velocity obstacle method[J]. Electronics, 2022, 11 (17): 2720.
doi: 10.3390/electronics11172720 |
2 |
HAND O , YAHIA B , DJAMEL B , et al. Energy-based USV maritime monitoring using multi-objective evolutionary algorithms[J]. Ocean Engineering, 2022, 253, 111182.
doi: 10.1016/j.oceaneng.2022.111182 |
3 |
HAN S , WANG L , WANG Y T , et al. An efficient motion planning based on grid map: predicted trajectory approach with global path guiding[J]. Ocean Engineering, 2021, 238, 109696.
doi: 10.1016/j.oceaneng.2021.109696 |
4 |
YU K , LIANG X F , LI M Z , et al. USV path planning method with velocity variation and global optimisation based on AIS service platform[J]. Ocean Engineering, 2021, 236, 109560.
doi: 10.1016/j.oceaneng.2021.109560 |
5 |
ZHOU C H , GU S D , WEN Y Q , et al. The review unmanned surface vehicle path planning: based on multi-modality constraint[J]. Ocean Engineering, 2020, 200, 107043.
doi: 10.1016/j.oceaneng.2020.107043 |
6 | LIN X G, FU Y. Research of USV obstacle avoidance strategy based on dynamic window[C]//Proc. of the IEEE International Conference on Mechatronics and Automation, 2017: 1410-1415. |
7 |
CHEN Z , ZHANG Y M , ZHANG Y G , et al. A hybrid path planning algorithm for unmanned surface vehicles in complex environment with dynamic obstacles[J]. IEEE Access, 2019, 7, 126439- 126449.
doi: 10.1109/ACCESS.2019.2936689 |
8 |
LYU H G , YIN Y . Fast path planning for autonomous ships in restricted waters[J]. Applied Sciences, 2018, 8 (12): 2592.
doi: 10.3390/app8122592 |
9 |
FU X L , HUANG J Z , JING Z L , et al. Complex switching dynamics and chatter alarm for aerial agents with artificial potential field method[J]. Applied Mathematical Modelling, 2022, 107, 637- 649.
doi: 10.1016/j.apm.2022.03.014 |
10 |
FIORINI P , SHHILLER Z . Motion planning in dynamic environments using velocity obstacles[J]. International Journal of Robotics Research, 1998, 17 (7): 760- 772.
doi: 10.1177/027836499801700706 |
11 | VAN DEN BERG J, LIN M, MANOCHA D. Reciprocal velocity obstacles for real-time multi-agent navigation[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2008: 1928-1935. |
12 | VAN DEN BERG J, GUY S, LIN M, et al. Reciprocal N-body collision avoidance[C]//Proc. of the Robotics Research: the 14th International Symposium ISRR, 2011: 3-19. |
13 |
陈曦, 王熙, 李宁. 基于分级速度障碍的移动机器人避障算法[J]. 计算机仿真, 2021, 38 (4): 281-285, 290.
doi: 10.3969/j.issn.1006-9348.2021.04.057 |
CHEN X , WANG X , LI N . Mobile robot obstacle avoidance algorithm based on hierarchical velocity obstacle[J]. Computer Simulation, 2021, 38 (4): 281-285, 290.
doi: 10.3969/j.issn.1006-9348.2021.04.057 |
|
14 |
吴学礼, 陈海璐, 许磊, 等. 改进速度障碍法的无人机冲突解脱方法研究[J]. 电光与控制, 2020, 27 (7): 31- 35.
doi: 10.3969/j.issn.1671-637X.2020.07.006 |
WU X L , CHEN H L , XU L , et al. A method for UAV conflict resolution based on improved velocity obstacle method[J]. Electronics Optics & Control, 2020, 27 (7): 31- 35.
doi: 10.3969/j.issn.1671-637X.2020.07.006 |
|
15 | 陈海璐. 基于粒子群算法和速度障碍法的无人机避险方法研究[D]. 石家庄: 河北科技大学, 2020. |
CHEN H L. Research on avoidance method of UAV based on particle swarm optimization and speed obstacle method[D]. Shijiazhuang: Hebei University of Science and Technology, 2020. | |
16 | 徐小强, 杨家鼎, 冒燕, 等. 基于速度障碍和改进人工势场算法的无人艇路径规划研究[J]. 武汉理工大学学报, 2022, 44 (7): 96- 102. |
XU X Q , YANG J D , MAO Y , et al. Study on path planning of USV based on velocity obstacle and improved artificial potential field algorithm[J]. Journal of Wuhan University of Technology, 2022, 44 (7): 96- 102. | |
17 | 洪晓斌, 徐郑攀, 魏新勇, 等. 基于改进速度障碍法的水面无人艇动态避障[J]. 光学精密工程, 2021, 29 (9): 2126- 2139. |
HONG X B , XU Z P , WEI X Y , et al. Dynamic obstacle avoidance of surface unmanned craft based on improved speed obstacle method[J]. Optics and Precision Engineering, 2021, 29 (9): 2126- 2139. | |
18 | ZHU X M , YI J J , DING H K , et al. Velocity obstacle based on vertical ellipse for multi-robot collision avoidance[J]. Journal of Intelligent & Robotic Systems, 2020, 99 (1): 183- 208. |
19 | 蔡伟斌. 基于海事规则的USV危险规避技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
CAI W B. Research on USV risk avoidance technology based on maritime rules[D]. Harbin: Harbin Engineering University, 2014. | |
20 |
MA Y , ZHAO Y , INCECIK A , et al. A collision avoidance approach via negotiation protocol for a swarm of USVs[J]. Ocean Engineering, 2021, 224, 108713.
doi: 10.1016/j.oceaneng.2021.108713 |
21 |
JOHANSEN T A , PEREZ T , CRISTOFARO A . Ship collision avoidance and colregs compliance using simulation-based control behavior selection with predictive hazard assessment[J]. IEEE Trans.on Intelligent Transportation Systems, 2016, 17 (12): 3407- 3422.
doi: 10.1109/TITS.2016.2551780 |
22 | KUWATA Y, WOLF M T, ZARZHITSKY D, et al. Safe maritime navigation with COLREGS using velocity obstacles[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011: 4728-4734. |
23 |
ZHANG L , MOU J M , CHEN P F , et al. Path planning for autonomous ships: a hybrid approach based on improved APF and modified VO methods[J]. Journal of Marine Science and Engineering, 2021, 9 (7): 761.
doi: 10.3390/jmse9070761 |
24 | EMIL H T, MORTEN B. Partly COLREGs-compliant collision avoidance for ASVs using encounter-specific velocity obstacles[C]//Proc. of the IFAC-Papers OnLine, 2022: 37-43. |
25 | NIU H, SAVVARIS A, TSOURDOS A. USV geometric collision avoidance algorithm for multiple marine vehicles[C]//Proc. of the OCEANS, 2017: 1446-1456. |
26 |
ERIKSEN B O H , BITAR G , BREIVIK M , et al. Hybrid collision avoidance for ASVs compliant with COLREGs rules 8 and 13-17[J]. Frontiers in Robotics and AI, 2020, 7, 11.
doi: 10.3389/frobt.2020.00011 |
27 |
WANG N . An intelligent spatial collision risk based on the quaternion ship domain[J]. The Journal of Navigation, 2010, 63 (4): 733- 749.
doi: 10.1017/S0373463310000202 |
28 | DINH G H , IM N . The combination of analytical and statistical method to define polygonal ship domain and reflect human experiences in estimating dangerous area[J]. International Journal of E-Navigation and Maritime Economy, 2016, 4 (C): 97- 108. |
29 | 苏开文, 赵月林. 紧迫局面的数学模型[J]. 大连海事大学学报, 2007, 115 (1): 17-20, 38. |
SU K W , ZHAO Y L . Study on the mathematical model of close-quarters situation[J]. Journal of Dalian Maritime University, 2007, 115 (1): 17-20, 38. | |
30 |
ZHOU J , DING F , YANG J X , et al. Navigation safety domain and collision risk index for decision support of collision avoidance of USVs[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13, 340- 350.
doi: 10.1016/j.ijnaoe.2021.03.001 |
[1] | Shaolong YANG, Jin HUANG, Xianbo XIANG, Weichao LI. Optimization of USV area coverage path planning based on confidence ellipsoid [J]. Systems Engineering and Electronics, 2022, 44(7): 2263-2269. |
[2] | Daidai CHEN, Wanyou LI. Local path planning algorithm for USV with towed cable [J]. Systems Engineering and Electronics, 2020, 42(9): 1988-1994. |
[3] | ZHANG Ru-bo,ZOU Qi-jie,YANG Ge,SU Hang. Adaptive autonomy control structure and algorithm for USV under uncertainty [J]. Systems Engineering and Electronics, 2014, 36(1): 128-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||