Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (6): 1975-1984.doi: 10.12305/j.issn.1001-506X.2025.06.25
• Guidance, Navigation and Control • Previous Articles Next Articles
Zhengliang LU, Jiatong LI, Yuandong HU, Wenhe LIAO
Received:
2024-09-26
Online:
2025-06-25
Published:
2025-07-09
Contact:
Yuandong HU
CLC Number:
Zhengliang LU, Jiatong LI, Yuandong HU, Wenhe LIAO. Attitude dynamics and aerodynamic compensation control of low-orbit mass moment spacecraft[J]. Systems Engineering and Electronics, 2025, 47(6): 1975-1984.
Table 1
Simulation parameter settings"
参数名称 | 参数值 |
质量 | 卫星壳体质量: 80 kg |
质量矩滑块质量: 20 kg | |
卫星参数 | 初始质心位置: [0.012 -0.003 0.009]mm |
转动惯量: | |
壳体: | |
滑块: | |
初始姿态 | 初始姿态欧拉角: [20, -20, 0]T/(°) |
初始角速度: [0.5 0.5 0.5]T/(°/s) | |
控制参数 | 姿态控制环参数: k=0.7, c=2 |
干扰观测器参数: K=0.1 | |
积分分离PID参数: p=7, i=1, d=18 | |
滚珠丝杠参数 | 公称直径: 5 mm |
弹性模量: 200 GPa | |
黏度系数: 0.04 | |
丝杠导程: 2 mm | |
滚珠直径: 1 mm | |
摩擦系数: 0.002 | |
泊松比: 0.3 | |
滚珠数: 20 | |
黏压系数: 22 nm/N |
1 |
WANGG P,WANG,SUZ J,et al.High-performance on-orbit intelligent computing and real-time services for remote sensing satellites based on space large-scale computing power[J].IEEE Access,
doi: 10.1109/ACCESS.2025.3573932 |
2 | CHEN L Y, GUI H C, XIAO S T. Aerodynamic attitude control of ultra-low Earth orbit satellite[C]//Proc. of the International Conference on Guidance, Navigation and Control, 2022: 5898-5908. |
3 | 王晓亮,姚小松,高爽,等.超低轨卫星气动阻力特性[J].上海交通大学学报,2022,56(8):1089-1100. |
WANGX L,YAOX S,GAOS,et al.Aerodynamic drag cha-racteristics of ultra-low orbit satellites[J].Journal of Shanghai Jiaotong University,2022,56(8):1089-1100. | |
4 |
陆正亮,谢昊东,倪涛,等.微纳卫星变轨机动段姿态复合控制技术研究[J].北京航空航天大学学报,
doi: 10.13700/j.bh.1001-5965.2023.0688 |
LUZ L,XIEH D,NIT,et al.Research on attitude composite control technology of micro-nano satellite orbit change maneuvering section[J].Journal of Beijing University of Aeronautics and Astronautics,
doi: 10.13700/j.bh.1001-5965.2023.0688 |
|
5 | ALTMANN J, SUTER D. Survey of the status of small and very small missiles[EB/OL]. [2024-08-26]. https://eldorado.tu-dortmund.de/server/api/core/bitstreams/6ce2aed6-8156-43a4-a338-d1d85eeef704/content |
6 |
LIG L,YANGM,WANGS Y,et al.Modified rolling gui-dance law for single moving mass controlled reentry vehicle against maneuvering target with impact angle constraints[J].Chinese Journal of Aeronautics,2022,35(6):226-239.
doi: 10.1016/j.cja.2021.08.026 |
7 | XIEY C,LEIY J,GUOJ X,et al.Spacecraft dynamics and control[M].Singapore:Springer,2022. |
8 |
RENZ J,LIC Y,WUK,et al.Design modeling and experimental investigation of a novel solar sail with high area-to-mass ratios for efficient solar sailing[J].Chinese Journal of Aeronautics,2024,37(10):234-248.
doi: 10.1016/j.cja.2024.01.033 |
9 |
DASA K,ACHARYYAK,MANKODIT K,et al.Fluidic thrust vector control of aerospace vehicles: state-of-the-art review and future prospects[J].Journal of Fluids Engineering,2023,145(8):080801.
doi: 10.1115/1.4062109 |
10 |
BONGW.Solar sail attitude control and dynamics, part 2[J].Journal of Guidance, Control, and Dynamics,2004,27(4):536-544.
doi: 10.2514/1.11133 |
11 |
CHILDSD W.A movable-mass attitude-stabilization system for artificial space stations[J].Journal of Spacecraft and Rockets,1971,8(8):829-834.
doi: 10.2514/3.30328 |
12 | 陆正亮,张翔,于永军,等.使用固体火箭发动机的快速机动卫星质量矩控制研究[J].推进技术,2017,38(5):1165-1172. |
LUZ L,ZHANGX,YUY J,et al.Study on rapid maneuver satellite mass moment control using solid rocket motors[J].Propulsion Technology,2017,38(5):1165-1172. | |
13 | 钱鹏俊,廖文和,陆正亮,等.质量矩固体推进微纳卫星自适应反演控制律设计[J].推进技术,2022,43(1):281-289. |
QIANP J,LIAOW H,LUZ L,et al.Design of adaptive in version control law for mass-moment solid propulsion micro-nano satellites[J].Propulsion Technology,2022,43(1):281-289. | |
14 |
QIANY J,LIJ Q,ZHANGH L.Formation control of sate-llites in low Earth orbit by using moving masses[J].Aerospace Science and Technology,2023,132,108073.
doi: 10.1016/j.ast.2022.108073 |
15 |
CRISPN H,ROBERTSP C E,LIVADIOTTIS,et al.In-orbit aerodynamic coefficient measurements using SOAR (satellite for orbital aerodynamics research)[J].Acta Astronautica,2021,180,85-99.
doi: 10.1016/j.actaastro.2020.12.024 |
16 | CHEN L Y, GUI H C, XIAO S T. Aerodynamic attitude control of ultra-low Earth orbit satellite[C]//Proc. of the International Conference on Guidance, Navigation and Control, 2022: 5898-5908. |
17 | 陆正亮,张翔,于永军,等.纳卫星变轨段质量矩姿态控制系统设计[J].航空学报,2017,38(6):242-252. |
LUZ L,ZHANGX,YUY J,et al.Design of a mass moment attitude control system for nanosatellite orbit transfer phase[J].Acta Aeronautica et Astronautica Sinica,2017,38(6):242-252. | |
18 | LUZ L,HUY D,LIAOW H,et al.Attitude control of the low Earth orbit CubeSat using a moving mass actuator[J].Journal of Aerospace Engineering: Part G,2022,236(10):1999-2009. |
19 | WANG M, CHAI B, SUN T W. Theoretical and experimental study of friction torque of ball screw mechanism considering lubrication[C]//Proc. of the IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies, 2021: 122-127. |
20 |
陈勇将,汤文成.微型滚珠丝杠副摩擦力矩模型的建立与实验验证[J].东南大学学报(自然科学版),2011,41(5):982-986.
doi: 10.3969/j.issn.1001-0505.2011.05.017 |
CHENY J,TANGW C.Friction torque model of miniature ball screw: establishment and verification[J].Journal of Southeast University (Natural Science Edition),2011,41(5):982-986.
doi: 10.3969/j.issn.1001-0505.2011.05.017 |
|
21 |
LIC Y,XUM T,SONGW J,et al.A review of static and dynamic analysis of ball screw feed drives, recirculating linear guideway, and ball screw[J].International Journal of Machine Tools and Manufacture,2023,188,104021.
doi: 10.1016/j.ijmachtools.2023.104021 |
22 |
LIUJ L,MAC,WANGS L.Precision loss modeling method of ball screw pair[J].Mechanical Systems and Signal Processing,2020,135,106397.
doi: 10.1016/j.ymssp.2019.106397 |
23 |
GAMBHIRES J,KISHORED R,LONDHEP S,et al.Review of sliding mode based control techniques for control system applications[J].International Journal of Dynamics and Control,2021,9(1):363-378.
doi: 10.1007/s40435-020-00638-7 |
24 | 陆正亮. 快速机动卫星质量矩姿态控制技术研究[D]. 南京: 南京理工大学, 2018. |
LU Z L. Research on rapid maneuver satellite mass moment attitude control technology[D]. Nanjing: Nanjing University of Science and Technology, 2018. | |
25 | FENGH,SONGQ Y,MAS L,et al.A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system[J].ISA Transactions,2022,129(1):472-484. |
26 |
BROGLIATOB,POLYAKOVA.Digital implementation of sliding-mode control via the implicit method: a tutorial[J].International Journal of Robust and Nonlinear Control,2021,31(9):3528-3586.
doi: 10.1002/rnc.5121 |
27 | DINGS H,HOUQ K,WANGH.Disturbance-observer-based second-order sliding mode controller for speed control of PMSM drives[J].IEEE Trans.on Energy Conversion,2022,38(1):100-110. |
28 |
STANFIELDK S,YOUNESA B.Dual attitude representations and kinematics for six-degree-of-freedom spacecraft dynamics[J].IEEE Access,2023,11,34349-34358.
doi: 10.1109/ACCESS.2023.3263146 |
29 |
SRIVASTAVAV K,MISHRAP,RAMAKRISHNAB N.Satellite ephemeris prediction for the Earth orbiting satellites[J].Aerospace Systems,2021,4(4):323-334.
doi: 10.1007/s42401-021-00092-z |
30 |
ENDESHAWL.Investigation of atmospheric anomalies due to the great Tohoku earthquake disturbance using NRLMSISE-00 atmospheric model measurement[J].Pure and Applied Geophysics,2024,181,1455-1478.
doi: 10.1007/s00024-024-03476-2 |
[1] | Xinyun ZHAO, Chunlei XIE. Flight path following robust control method for stratospheric airship [J]. Systems Engineering and Electronics, 2025, 47(6): 2002-2014. |
[2] | Bo GUO, Ming TIE, Wenhui FAN, Chuanxu LI. Cooperative guidance method of high lift-to-drag ratio aircraft based on sliding mode control [J]. Systems Engineering and Electronics, 2025, 47(2): 580-590. |
[3] | Wenwen ZHANG, Cheng ZHANG, Chenming ZHENG, Runbei CHENG, Tianle CHEN. Design of improved line-of-sight guidance law based on aircraft visual information [J]. Systems Engineering and Electronics, 2024, 46(8): 2779-2788. |
[4] | Shuaihao YAN, Mingying WEI, Yongbin ZHENG. Attitude control method of air defense missile based on large command change rate [J]. Systems Engineering and Electronics, 2024, 46(7): 2465-2474. |
[5] | Xinyun ZHAO, Jianqiao YU. Multi-source force combined control method for novel agile projectiles [J]. Systems Engineering and Electronics, 2024, 46(5): 1734-1744. |
[6] | Qiushi ZHENG, Weichun XU, Minghan ZHAO, Naixing LI, Xuxin BAO. Research on roll control technology of trajectory correction fuse with active-canards [J]. Systems Engineering and Electronics, 2024, 46(4): 1412-1421. |
[7] | Yanling LI, Feizhou LUO, Zhilei GE. Robust observer-based deep reinforcement learning for attitude stabilization of vertical takeoff and landing vehicle [J]. Systems Engineering and Electronics, 2024, 46(3): 1038-1047. |
[8] | Yang GUI, Bochao ZHENG, Peng GAO. Sliding mode attitude control of quadrotor UAV based on NESO-LFDC [J]. Systems Engineering and Electronics, 2024, 46(3): 1075-1083. |
[9] | Yuyu ZHAO, Chao SUO, Yuxiao WANG. Differential flatness-based tracking control method for hypersonic vehicle [J]. Systems Engineering and Electronics, 2024, 46(3): 1084-1092. |
[10] | Yushi JIANG, Yang CHEN, Lu GAO, Ligen CAI, Jixing LYU. Predefined-time adaptive control for heavy-lift launch vehicles [J]. Systems Engineering and Electronics, 2023, 45(8): 2570-2577. |
[11] | Haoran LU, Wei ZHENG, Xiaohua CHANG. Fractional order sliding mode guidance law based on robust exact differentiator [J]. Systems Engineering and Electronics, 2023, 45(1): 175-183. |
[12] | Shibin LUO, Xiaodong LI, Zhongsen WANG, Cheng XU. Generalized super-twisting finite-time control for the ascent phase of parallel carrier [J]. Systems Engineering and Electronics, 2022, 44(5): 1626-1635. |
[13] | Xiao TANG, Jikun YE, Xu LI. Design of 3D nonlinear prescribed performance guidance law [J]. Systems Engineering and Electronics, 2022, 44(2): 619-627. |
[14] | Shuangshuang WANG, Chuntao LI, Zhen WANG, Zikang SU, Fei DAI. Design of carrier landing controller based on adaptive dynamic inversion [J]. Systems Engineering and Electronics, 2022, 44(1): 218-225. |
[15] | Zhongxing GAO, Bin PENG, Xiaowei CHEN, Yonggang ZHANG. Discrete sliding mode control for ellipse parameters of vibrating gyroscope [J]. Systems Engineering and Electronics, 2022, 44(1): 226-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||