Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (12): 4157-4164.doi: 10.12305/j.issn.1001-506X.2024.12.24
• Guidance, Navigation and Control • Previous Articles
Haikuo ZHANG, Xiuyun MENG
Received:
2024-01-15
Online:
2024-11-25
Published:
2024-12-30
Contact:
Haikuo ZHANG
CLC Number:
Haikuo ZHANG, Xiuyun MENG. UAV online trajectory planning based on improved RRT* algorithm[J]. Systems Engineering and Electronics, 2024, 46(12): 4157-4164.
1 |
DOSHI A A , POSTULA A J , FLETCHER A , et al. Development of micro-UAV with integrated motion planning for open-cut mining surveillance[J]. Microprocessors and Microsystems, 2015, 39 (8): 829- 835.
doi: 10.1016/j.micpro.2015.07.008 |
2 |
POŁKA M , PTAK S , ŁUKASZ K . The use of UAV's for search and rescue operations[J]. Procedia Engineering, 2017, 192, 748- 752.
doi: 10.1016/j.proeng.2017.06.129 |
3 | IVUSHKIN K, BARTHOLOMEUS H, BREGT A, et al. UAV based soil salinity assessment of cropland[J]. 2018, 338: 502-512. |
4 |
DELMERICO J , MUEGGLER E , NITSCH J , et al. Active autonomous aerial exploration for ground robot path planning[J]. IEEE Robotics and Automation Letters, 2017, 2 (2): 664- 671.
doi: 10.1109/LRA.2017.2651163 |
5 | 张海阔, 孟秀云. 基于改进粒子群算法的无人机航迹规划[J]. 飞行力学, 2024, 42 (2): 29- 35. |
ZHANG H K , MENG X Y . UAV route planning based on improved particle swarm optimization algorithm[J]. Flight Dynamics, 2024, 42 (2): 29- 35. | |
6 |
刘玉杰, 崔凯凯, 韩维, 等. 基于IPSO的舰载机出动离场规划研究[J]. 系统工程与电子技术, 2024, 46 (4): 1337- 1345.
doi: 10.12305/j.issn.1001-506X.2024.04.22 |
LIU Y J , CUI K K , HAN W , et al. Research on departure planning of carrier aircraft based on IPSO[J]. Systems Engineering and Electronics, 2024, 46 (4): 1337- 1345.
doi: 10.12305/j.issn.1001-506X.2024.04.22 |
|
7 | GUANGSHENG L I , CHOU W . Path planning for mobile robot using self-adaptive learning particle swarm optimization[J]. Science China (Information Sciences), 2018, 61 (5): 267- 284. |
8 | CAO Y , WEI W Y , BAI Y , et al. Multi-base multi-UAV cooperative reconnaissance path planning with genetic algorithm[J]. Cluster Computing, 2019, 22 (3): 5175- 5184. |
9 |
LI D D , WANG L , CAI J C , et al. Research on path planning of mobile robot based on improved genetic algorithm[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2023, 14 (6): 2341030.
doi: 10.1142/S1793962323410301 |
10 | 文超, 董文瀚, 解武杰, 等. 基于CEA-GA的多无人机三维协同曲线航迹规划方法[J]. 北京航空航天大学学报, 2023, 49 (11): 3086- 3099. |
WEN C , DONG W H , XIE W J , et al. Multi-UAVs 3D cooperative curve path planning method based on CEA-GA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (11): 3086- 3099. | |
11 | SUN L. Path planning of mobile robot based on improved ant colony algorithm[C]//Proc. of the IEEE 11th Joint International Information Technology and Artificial Intelligence Conference, 2023: 985-989. |
12 |
SHEN Z P , DING W N , LIU Y C , et al. Path planning optimization for unmanned sailboat in complex marine environment[J]. Ocean Engineering, 2023, 269, 113475.
doi: 10.1016/j.oceaneng.2022.113475 |
13 |
MAVROVOUNIOTIS M , YANG S X . Ant algorithms with immigrants schemes for the dynamic vehicle routing problem[J]. Information Sciences, 2015, 294, 456- 477.
doi: 10.1016/j.ins.2014.10.002 |
14 |
FARAHBAKHSH H , POURFAR I , ARA A L . A modified artificial bee colony algorithm using accept-reject method: theory and application in virtual power plant planning[J]. IETE Journal of Research, 2023, 69 (8): 5364- 5379.
doi: 10.1080/03772063.2021.1973597 |
15 | MIRJALILI S , GANDOMI A H , MIRJALILI S Z , et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114 (1): 163- 191. |
16 |
宋超, 李波, 马云红, 等. 基于优化A*和MPC融合算法的三维无人机航迹规划[J]. 系统工程与电子技术, 2023, 45 (12): 3995- 4004.
doi: 10.12305/j.issn.1001-506X.2023.12.30 |
SONG C , LI B , MA Y H , et al. Trajectory planning based on optimized A* and MPC fusion algorithm[J]. Systems Engineering and Electronics, 2023, 45 (12): 3995- 4004.
doi: 10.12305/j.issn.1001-506X.2023.12.30 |
|
17 | 潘登, 郑建华, 高东. 基于二维连通图的无人机快速三维路径规划[J]. 北京航空航天大学学报, 2023, 49 (12): 3419- 3431. |
PAN D , ZHENG J H , GAO D . Fast 3D path planning of UAV based on 2D connected graph[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (12): 3419- 3431. | |
18 |
LI S D , ZHOU H H , HU J , et al. A fast path planning approach for unmanned aerial vehicles[J]. Concurrency and Computation: Practice and Experience, 2015, 27 (13): 3446- 3460.
doi: 10.1002/cpe.3291 |
19 |
YU F J , SHANG H Q , ZHU Q L , et al. An efficient RRT-based motion planning algorithm for autonomous underwater vehicles under cylindrical sampling constraints[J]. Autonomous Robots, 2023, 47 (3): 281- 297.
doi: 10.1007/s10514-023-10083-y |
20 | CHAO N , LIU Y K , XIA H , et al. DL-RRT* algorithm for least dose path re-planning in dynamic radioactive environments[J]. Nuclear Engineering and Technology, 2018, 51 (3): 825- 836. |
21 | ELBANHAWI M , SIMIC M . Sampling-based robot motion planning: a review[J]. IEEE Access, 2014, 2 (1): 56- 77. |
22 |
KARAMAN S , FRAZZOLI E . Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30 (7): 846- 894.
doi: 10.1177/0278364911406761 |
23 | LEE D, SHIM D H. Path planner based on bidirectional spline-RRT* for fixed-wing UAVs[C]//Proc. of the International Conference on Unmanned Aircraft Systems, 2016: 77-86. |
24 | GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proc. of the International Conference on Intelligent Robots and Systems, 2014: 2997-3004. |
25 | QURESHI A H , AYAZ Y . Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments[J]. Robotics & Autonomous Systems, 2015, 68, 1- 11. |
26 | ADIYATOV O, VAROL H A. Rapidly-exploring random tree based memory efficient motion planning[C]//Proc. of the Mechatronics and Automation, 2013: 354-359. |
27 | KAWABE T, NISHI T. A flexible collision-free trajectory planning for multiple robot arms by combining Q-learning and RRT*[C]//Proc. of the IEEE 18th International Conference on Automation Science and Engineering, 2022: 2363-2368. |
28 | LIU H S, GU Y Q, LI X J, et al. Deep reinforcement learning integrated RRT algorithm for path planning[C]//Proc. of the WRC Symposium on Advanced Robotics and Automation, 2023: 239-244. |
29 |
MAMMARELLA M , CAPELLO E , DABBENE F , et al. Sample-based SMPC for tracking control of fixed-wing UAV[J]. IEEE Control Systems Letters, 2018, 2 (4): 611- 616.
doi: 10.1109/LCSYS.2018.2845546 |
30 |
SANTOS M A , FERRAMOSCA A , RAFFO G V . Tube-based MPC with nonlinear control for load transportation using a UAV[J]. IFAC PapersOnLine, 2018, 51 (25): 459- 465.
doi: 10.1016/j.ifacol.2018.11.180 |
31 |
王晓海, 孟秀云, 李传旭. 基于MPC的无人机航迹跟踪控制器设计[J]. 系统工程与电子技术, 2021, 43 (1): 191- 198.
doi: 10.3969/j.issn.1001-506X.2021.01.23 |
WANG X H , MENG X Y , LI C X . Design of trajectory tracking controller for UAV based on MPC[J]. Systems Engineering and Electronics, 2021, 43 (1): 191- 198.
doi: 10.3969/j.issn.1001-506X.2021.01.23 |
[1] | Zichun XIONG, Yongshan LIU. Flight vehicle midcourse trajectory fast planning for low-speed target [J]. Systems Engineering and Electronics, 2024, 46(7): 2424-2436. |
[2] | Jiawei SUN, Minghui YU, Dapeng YANG, Haoquan TANG, Dapeng BIAN. Path planning of carrier aircraft traction system based on CL-RRT and MPC [J]. Systems Engineering and Electronics, 2024, 46(5): 1745-1755. |
[3] | Yujie LIU, Yue LI, Wei HAN, Kaikai CUI. Trajectory planning for penetration of multi-aircraft for mation based on improved convex optimization algorithm [J]. Systems Engineering and Electronics, 2023, 45(9): 2819-2830. |
[4] | Zhengda CUI, Mingying WEI, Yunqian LI. Cooperative trajectory planning method in later part of midcourse based on velocity estimation [J]. Systems Engineering and Electronics, 2023, 45(9): 2912-2921. |
[5] | Shenming QUAN, Songyan WANG, Tao CHAO, Ming YANG. Reentry guidance method based on improved artificial potential field method [J]. Systems Engineering and Electronics, 2023, 45(7): 2158-2169. |
[6] | Xiaocao YANG, Yanli DU, Yunong BU, Yanbin LIU, Cheng GAO. Online three-dimensional RRT* cooperative route planning based on hierarchical decomposition [J]. Systems Engineering and Electronics, 2023, 45(5): 1409-1419. |
[7] | Qinglu WANG, Fengguo WU, Chengchen ZHENG, Hui LI. UAV path planning based on optimized artificial potential field method [J]. Systems Engineering and Electronics, 2023, 45(5): 1461-1468. |
[8] | Chao SONG, Bo LI, Yunhong MA, Jingyi HUANG. 3D UAV trajectory planning based on optimized A* and MPC fusion algorithm [J]. Systems Engineering and Electronics, 2023, 45(12): 3995-4004. |
[9] | Xiaowei FU, Jing PAN. Distributed formation control of UAV swarm with dynamic obstacle avoidance [J]. Systems Engineering and Electronics, 2022, 44(2): 529-537. |
[10] | Hanyang WANG, Liang CHEN, Hai XU, Jingbo BAI. UAV online trajectory planning based on MOEA/D-ARMS [J]. Systems Engineering and Electronics, 2022, 44(11): 3505-3514. |
[11] | Yao HAN, Shaohua LI. UAV path planning based on improved artificial potential field [J]. Systems Engineering and Electronics, 2021, 43(11): 3305-3311. |
[12] | Xiaohai WANG, Xiuyun MENG, Chuanxu LI. Design of trajectory tracking controller for UAV based on MPC [J]. Systems Engineering and Electronics, 2021, 43(1): 191-198. |
[13] | Honghai ZHANG, Xiaopeng QIAN, Xinwei WU, Hao LIU, Yu TIAN, Lichao WANG. Cooperative trajectory planning for UAV formation based onpath-speed decoupling [J]. Systems Engineering and Electronics, 2020, 42(9): 1976-1987. |
[14] | Daidai CHEN, Wanyou LI. Local path planning algorithm for USV with towed cable [J]. Systems Engineering and Electronics, 2020, 42(9): 1988-1994. |
[15] | Fei WANG, Guangya SI, Zongping HE, Qiang WANG. Theory and calculation method of confrontational potential energy [J]. Systems Engineering and Electronics, 2020, 42(12): 2771-2778. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||