Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (7): 2424-2436.doi: 10.12305/j.issn.1001-506X.2024.07.24
• Guidance, Navigation and Control • Previous Articles
Zichun XIONG, Yongshan LIU
Received:
2023-06-09
Online:
2024-06-28
Published:
2024-07-02
Contact:
Yongshan LIU
CLC Number:
Zichun XIONG, Yongshan LIU. Flight vehicle midcourse trajectory fast planning for low-speed target[J]. Systems Engineering and Electronics, 2024, 46(7): 2424-2436.
1 |
DRAKE D , KOZIOL S , CHABOT E . Mobile robot path planning with a moving goal[J]. IEEE Access, 2018, 6, 12800- 12814.
doi: 10.1109/ACCESS.2018.2797070 |
2 |
PHUNG M D , HA Q P . Motion-encoded particle swarm optimization for moving target search using UAVs[J]. Applied Soft Computing, 2020, 97, 106705.
doi: 10.1016/j.asoc.2020.106705 |
3 | TRIHARMINTO H H, ADJI T B, SETIAWAN N A. Dynamic UAV path planning for moving target intercept in 3D[C]//Proc. of the IEEE 2nd International Conference on Instrumentation Control and Automation, 2011: 157-161. |
4 |
MEYER Y , ISAIAH P , SHIMA T . On Dubins paths to intercept a moving target[J]. Automatica, 2015, 53, 256- 263.
doi: 10.1016/j.automatica.2014.12.039 |
5 | BEUL M, BEHNKE S. Fast full state trajectory generation for multirotors[C]//Proc. of the IEEE International Conference on Unmanned Aircraft Systems, 2017: 408-416. |
6 |
ZHENG Y , CHEN Z , SHAO X M , et al. Time-optimal guidance for intercepting moving targets with impact-angle constraints[J]. Chinese Journal of Aeronautics, 2022, 35 (7): 157- 167.
doi: 10.1016/j.cja.2021.08.002 |
7 | LIU Y, WANG Y D, DONG L. USV target interception control with reinforcement learning and motion prediction method[C]//Proc. of the IEEE 37th Youth Academic Annual Conference of Chinese Association of Automation, 2022: 1050-1054. |
8 | 王祝, 刘莉, 龙腾, 等. 基于罚函数序列凸规划的多无人机轨迹规划[J]. 航空学报, 2016, 37 (10): 3149- 3158. |
WANG Z , LIU L , LONG T , et al. Trajectory planning for multi- UAVs using penalty sequential convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (10): 3149- 3158. | |
9 | MENG B B. UAV path planning based on bidirectional sparse A* search algorithm[C]//Proc. of the IEEE International Conference on Intelligent Computation Technology and Automation, 2010: 1106-1109. |
10 |
ZHEN Z Y , CHEN Y , WEN L D , et al. An intelligent coopera- tive mission planning scheme of UAV swarm in uncertain dynamic environment[J]. Aerospace Science and Technology, 2020, 100, 105826.
doi: 10.1016/j.ast.2020.105826 |
11 |
QI Y Y , LIU J C , YU J Z . Dynamic modeling and hybrid fireworks algorithm-based path planning of an amphibious robot[J]. Gui-dance, Navigation and Control, 2022, 2 (1): 2250002.
doi: 10.1142/S2737480722500029 |
12 |
OYANA S N O , LI J , USMAN M . Three-layer multi-UAVs path planning based on ROBL-MFO[J]. Guidance, Navigation and Control, 2022, 2 (3): 2250017.
doi: 10.1142/S2737480722500170 |
13 |
SHANMUGAVEL M , TSOURDOS A , WHITE B , et al. Cooperative path planning of multiple UAVs using Dubins paths with clothoid arcs[J]. Control Engineering Practice, 2010, 18 (9): 1084- 1092.
doi: 10.1016/j.conengprac.2009.02.010 |
14 |
YANG S B , CUI T , HAO X Y , et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method[J]. Aerospace Science and Technology, 2017, 67, 88- 95.
doi: 10.1016/j.ast.2017.04.001 |
15 | YAN C , XIANG X J , WANG C . Towards real-time path planning through deep reinforcement learning for a UAV in dynamic environments[J]. Journal of Intelligent & Robotic Systems, 2020, 98 (12): 297- 309. |
16 |
ZHANG Y T , ZHANG Y M , YU Z Q . Path following control for UAV using deep reinforcement learning approach[J]. Gui-dance, Navigation and Control, 2021, 1 (1): 2150005.
doi: 10.1142/S2737480721500059 |
17 | 李樾, 韩维, 陈清阳, 等. 凸优化算法在有人/无人机协同系统航迹规划中的应用[J]. 宇航学报, 2020, 41 (3): 276- 286. |
LI Y , HAN W , CHEN Q Y , et al. Application of convex optimization algorithm in trajectory planning of manned/unmanned cooperative system[J]. Journal of Astronautics, 2020, 41 (3): 276- 286. | |
18 |
LIU X F , SHEN Z J , LU P . Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (2): 227- 241.
doi: 10.2514/1.G001210 |
19 | LIU X F . Convergence-guaranteed trajectory planning for a class of nonlinear systems with nonconvex state constraints[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 58 (3): 2243- 2256. |
20 |
ZHANG G X , LIU X F . UAV collision avoidance using mixed-integer second-order cone programming[J]. Journal of Gui-dance, Control, and Dynamics, 2022, 45 (9): 1732- 1738.
doi: 10.2514/1.G006353 |
21 | DINH Q T, DIEHL M. Local convergence of sequential convex programming for nonconvex optimization[C]//Proc. of the Recent Advances in Optimization and its Applications in Engineering: the 14th Belgian-French-German Conference on Optimization, 2010: 93-102. |
22 | MESSERER F, DIEHL M. Determining the exact local convergence rate of sequential convex programming[C]//Proc. of the IEEE European Control Conference, 2020: 1280-1285. |
23 |
BONALLI R , LEW T , PAVONE M . Analysis of theoretical and numerical properties of sequential convex programming for continuous-time optimal control[J]. IEEE Trans.on Automatic Control, 2023, 68 (8): 4570- 4585.
doi: 10.1109/TAC.2022.3207865 |
24 | AUGUGLIARO F, SCHOELLIG A P, D'ANDREA R. Gene- ration of collision-free trajectories for a quadrocopter fleet: a sequential convex programming approach[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012: 1917-1922. |
25 |
JIANG H , AN Z , YU Y N , et al. Cooperative guidance with multiple constraints using convex optimization[J]. Aerospace Science and Technology, 2018, 79, 426- 440.
doi: 10.1016/j.ast.2018.06.001 |
26 |
MORGAN D , CHUNG S J , HADAEGH F Y . Model predictive control of swarms of spacecraft using sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2014, 37 (6): 1725- 1740.
doi: 10.2514/1.G000218 |
27 |
MORGAN D , SUBRAMANIAN G P , CHUNG S J , et al. Swarm assignment and trajectory optimization using variable-swarm, distributed auction assignment and sequential convex programming[J]. The International Journal of Robotics Research, 2016, 35 (10): 1261- 1285.
doi: 10.1177/0278364916632065 |
28 | 徐广通, 邹汝平, 王祝, 等. 基于滚动规划框架的多无人机协同轨迹快速生成方法[J]. 无人系统技术, 2021, 4 (2): 33- 39. |
XU G T , ZOU R P , WANG Z , et al. Multiple unmanned aerial vehicle rapid cooperative trajectory generation method using receding planning framework[J]. Unmanned Systems Techno-logy, 2021, 4 (2): 33- 39. | |
29 | 徐广通, 孟子阳, 龙腾, 等. 通信距离受限下无人机集群轨迹分布式滚动规划[J]. 中国科学: 信息科学, 2022, 52 (8): 1527- 1541. |
XU G T , MENG Z Y , LONG T , et al. Trajectory distributed receding planning for UAV swarms subject to limited communication distance[J]. Scientia Sinica Informations, 2022, 52 (8): 1527- 1541. | |
30 |
SHI Y , ZHANG L H , DONG S Q . Path planning of anti-ship missile based on Voronoi diagram and binary tree algorithm[J]. Defence Science Journal, 2019, 69 (4): 369- 377.
doi: 10.14429/dsj.69.14062 |
31 |
WANG Z , LIU L , LONG T . Minimum-time trajectory planning for multi-unmanned-aerial-vehicle cooperation using sequential convex programming[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (11): 2976- 2982.
doi: 10.2514/1.G002349 |
32 |
XU G T , LONG T , WANG Z , et al. Trust-region filtered sequential convex programming for multi-UAV trajectory planning and collision avoidance[J]. ISA Transactions, 2022, 128, 664- 676.
doi: 10.1016/j.isatra.2021.11.043 |
33 | 邓云山, 夏元清, 孙中奇. 基于松弛序列凸优化的轮式机器人协同轨迹规划[J]. 无人系统技术, 2021, 4 (1): 24- 32. |
DENG Y S , XIA Y Q , SUN Z Q . Coordination trajectory planning of wheeled robot using relaxation sequential convex programming[J]. Unmanned System Technology, 2021, 4 (1): 24- 32. | |
34 | 刘哲, 陆浩然, 郑伟, 等. 多滑翔飞行器时间协同轨迹快速规划[J]. 航空学报, 2021, 42 (11): 317- 331. |
LIU Z , LU H R , ZHENG W , et al. Rapid time-coordination trajectory planning method for multi-glide vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (11): 317- 331. | |
35 | 邓雁鹏, 穆荣军, 彭娜, 等. 月面着陆动力下降段最优轨迹序列凸优化方法[J]. 宇航学报, 2022, 43 (8): 1029- 1039. |
DENG Y P , MU R J , PENG N , et al. Sequential convex optimization method for lunar landing during power decent phase[J]. Journal of Astronautics, 2022, 43 (8): 1029- 1039. |
[1] | Kai ZHANG, Yao TIAN. Direct symbol detection method for distributed receiving moving targets based on EM-VB [J]. Systems Engineering and Electronics, 2024, 46(4): 1422-1430. |
[2] | Jun LIU, Ning CUI, Jiaxin XIE, Kun XING. Airborne radar air-to-air RF stealth detection parameter design based on NSGA-Ⅲ [J]. Systems Engineering and Electronics, 2024, 46(1): 97-104. |
[3] | Ran LAI, Gang SUN, Wei ZHANG, Tao ZHANG. Space-time moving target parameter estimation algorithm based on non-convex relaxation of atomic norm [J]. Systems Engineering and Electronics, 2023, 45(9): 2761-2767. |
[4] | Yujie LIU, Yue LI, Wei HAN, Kaikai CUI. Trajectory planning for penetration of multi-aircraft for mation based on improved convex optimization algorithm [J]. Systems Engineering and Electronics, 2023, 45(9): 2819-2830. |
[5] | Hong ZHANG, Yunhua WU, Shengjun ZHONG, Haibo GUO. Space target compound pointing control method based on backstepping [J]. Systems Engineering and Electronics, 2023, 45(9): 2884-2893. |
[6] | Zhengda CUI, Mingying WEI, Yunqian LI. Cooperative trajectory planning method in later part of midcourse based on velocity estimation [J]. Systems Engineering and Electronics, 2023, 45(9): 2912-2921. |
[7] | Ruixian HU, Zhao ZHANG, Cheng LUO. A baseline optimization method for distributive satellites system [J]. Systems Engineering and Electronics, 2023, 45(8): 2423-2437. |
[8] | Zehong DONG, Yinghui LI, Maolong LYU, Zhe LI, Binbin PEI. Singularity-free fixed-time adaptive switching control for hypersonic flight vehicle with input constraints [J]. Systems Engineering and Electronics, 2023, 45(5): 1476-1488. |
[9] | Wenjuan REN, Zhanpeng YANG, Guangluan XU, Kun FU. Fusion calculation model of sea moving target identity confidence [J]. Systems Engineering and Electronics, 2023, 45(4): 1082-1089. |
[10] | Xianghai LI, Zhiwei YANG, Shun HE, Guisheng LIAO, Chaolei HAN, Yan JIANG. Method for SAR-GMTI moving target radial velocity estimation and relocation based on road network information assistance in multi-satellite formation system [J]. Systems Engineering and Electronics, 2023, 45(3): 629-637. |
[11] | Chao SONG, Bo LI, Yunhong MA, Jingyi HUANG. 3D UAV trajectory planning based on optimized A* and MPC fusion algorithm [J]. Systems Engineering and Electronics, 2023, 45(12): 3995-4004. |
[12] | Yemin LIU, Yongzhen LI, Datong HUANG, Shiqi XING, Xiaowei YU. Research on the method of dual-jammer system against SAR-GMTI based on integration of reconnaissance and jamming [J]. Systems Engineering and Electronics, 2023, 45(10): 3098-3107. |
[13] | Peichen WANG, Xunliang YAN, Kuan WANG, Xiong ZHENG. Robust trajectory optimization method based on stochastic response surface and polynomial chaos [J]. Systems Engineering and Electronics, 2023, 45(10): 3226-3239. |
[14] | Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method [J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511. |
[15] | Hanyang WANG, Liang CHEN, Hai XU, Jingbo BAI. UAV online trajectory planning based on MOEA/D-ARMS [J]. Systems Engineering and Electronics, 2022, 44(11): 3505-3514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||