Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (12): 4149-4156.doi: 10.12305/j.issn.1001-506X.2024.12.23
• Systems Engineering • Previous Articles
Shengxi LI1,2, Haiyang LI1,2,*, Xiangyue HE3
Received:2023-05-03
Online:2024-11-25
Published:2024-12-30
Contact:
Haiyang LI
CLC Number:
Shengxi LI, Haiyang LI, Xiangyue HE. Design method of restricted Walker constellation for global rapid revisit[J]. Systems Engineering and Electronics, 2024, 46(12): 4149-4156.
| 1 |
BHAMIDIPATI S , MINA T , SANCHEZ A , et al. Satellite constellation design for a lunar navigation and communication system[J]. NAVIGATION : Journal of the Institute of Navigation, 2023, 70 (4): 613.
doi: 10.33012/navi.613 |
| 2 |
XU X Y , WANG C H , JIN Z H . An analysis method for ISL of multilayer constellation[J]. Journal of Systems Engineering and Electronics, 2022, 33 (4): 961- 968.
doi: 10.23919/JSEE.2022.000093 |
| 3 |
王晓伟, 詹亚锋, 谢浩然, 等. 通导一体化环月星座设计初探[J]. 系统工程与电子技术, 2023, 45 (1): 241- 249.
doi: 10.12305/j.issn.1001-506X.2023.01.28 |
|
WANG X W , ZHAN Y F , XIE H R , et al. A preliminary study on the design of constellation orbiting the moon with the communication and navigation integration[J]. Systems Engineering and Electronics, 2023, 45 (1): 241- 249.
doi: 10.12305/j.issn.1001-506X.2023.01.28 |
|
| 4 | LI Z Q , XIE Y Q , HOU W Z , et al. In-orbit test of the pola-rized scanning atmospheric corrector (PSAC) onboard Chinese environmental protection and disaster monitoring satellite constellation HJ-2 A/B[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 4108217. |
| 5 |
KIMIJIMA S , NAGAI M . Monitoring mining-induced geo-ha-zards in a contaminated mountainous region of Indonesia using satellite imagery[J]. Remote Sensing, 2023, 15 (13): 3436.
doi: 10.3390/rs15133436 |
| 6 |
BERNARDI M S , AFRICA P C , FALCO C D , et al. On the use of interferometric synthetic aperture radar data for monitoring and forecasting natural hazards[J]. Mathematical Geosciences, 2021, 53 (8): 1781- 1812.
doi: 10.1007/s11004-021-09948-8 |
| 7 |
CAPEZ G M , HENN S , FRAIRE J A , et al. Sparse satellite constellation design for global and regional direct-to-satellite IoT services[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022,, 58 (5): 3786- 3801.
doi: 10.1109/TAES.2022.3185970 |
| 8 | PEGHER D J, PARISH J A. Optimizing coverage and revisit time in sparse military satellite constellations: a comparison of traditional approaches and genetic algorithms[R]. Monterey: Naval Postgraduate School, 2004. |
| 9 |
ULYBYSHEV Y . Satellite constellation design for complex coverage[J]. Journal of Spacecraft and Rockets, 2008, 45 (4): 843- 849.
doi: 10.2514/1.35369 |
| 10 | WALKER J G. Circular orbit patterns providing continuous whole earth coverage[R]. London: Royal Aircraft Establishment, 1970. |
| 11 | 陈雨, 赵灵峰, 刘会杰, 等. 低轨Walker星座构型演化及维持策略分析[J]. 宇航学报, 2019, 40 (11): 1296- 1303. |
| CHEN Y , ZHAO L F , LIU H J , et al. Analysis of configuration and maintenance strategy of LEO Walker constellation[J]. Journal of Astronautics, 2019, 40 (11): 1296- 1303. | |
| 12 |
DENG Z L , GE W X , YIN L , et al. Optimization design of two-layer walker constellation for LEO navigation augmentation using a dynamic multi-objective differential evolutionary algorithm based on elite guidance[J]. GPS Solutions, 2023, 27 (1): 26.
doi: 10.1007/s10291-022-01366-5 |
| 13 | VEMURI S S, DAPPURI B. Walker-delta constellation design for LEO-based navigation using small satellites[C]//Proc. of the 7th International Conference on Computing in Engineering & Technology, 2022: 250-253. |
| 14 |
KITAJIMA N , SETO R , YAMAZAKI D , et al. Potential of a SAR small-satellite constellation for rapid monitoring of flood extent[J]. Remote Sensing, 2021, 13 (10): 1959.
doi: 10.3390/rs13101959 |
| 15 | LUO Y Z, SHU P. Optimization design of Walker constellation for multi-target rapid revisit[C]//Proc. of the 8th International Conference on Instrumentation & Measurement, Computer, 2018: 483-486. |
| 16 | LANG T J. LEO constellations to cover the earth in one rev[C]// Proc. of the American Institute of Aeronautics and Astronautics Astrodynamics Specialist Conference, 2014. |
| 17 |
FERRINGER M P , SPENCER D B . Satellite constellation design tradeoffs using multiple-objective evolutionary computation[J]. Journal of Spacecraft and Rockets, 2006, 43 (6): 1404- 1411.
doi: 10.2514/1.18788 |
| 18 | MORTARI D , WILKINS M P , BRUCCOLERI C . The flower constellations[J]. The Journal of the Astronautical Sciences, 2004, 52 (1/2): 107- 127. |
| 19 | RAZOUMNY Y N. Route theory for optimal design of satellite constellations to minimize revisit time in low Earth orbits[C]//Proc. of the International Astronautical Federation-the 56th International Astronautical Congress, 2005. |
| 20 |
RAZOUMNY Y N . Fundamentals of the route theory for satellite constellation design for earth discontinuous coverage. part 2: synthesis of satellite orbits and constellations[J]. Acta Astronautica, 2016, 128:, 741- 758.
doi: 10.1016/j.actaastro.2016.07.016 |
| 21 |
RAZOUMNY Y N . Route satellite constellations for earth discontinuous coverage and optimal solution peculiarities[J]. Journal of Spacecraft and Rockets, 2017, 54 (3): 572- 581.
doi: 10.2514/1.A33689 |
| 22 |
ZHANG T J , SHEN H X , LI Z , et al. Restricted constellation design for regional navigation augmentation[J]. Acta Astronautica, 2018, 150, 231- 239.
doi: 10.1016/j.actaastro.2018.04.044 |
| 23 |
ULYBYSHEV Y . Geometric analysis and design method for discontinuous coverage satellite constellations[J]. Journal of Guidance, Control, and Dynamics, 2014, 37 (2): 549- 557.
doi: 10.2514/1.60756 |
| 24 |
ULYBYSHEV Y . General analysis method for discontinuous coverage satellite constellations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38 (12): 2475- 2483.
doi: 10.2514/1.G001254 |
| 25 |
HE X Y , LI H Y . Analytical solutions for earth discontinuous coverage of satellite constellation with repeating ground tracks[J]. Chinese Journal of Aeronautics, 2022, 35 (10): 275- 291.
doi: 10.1016/j.cja.2021.11.012 |
| 26 |
HAN C , ZHANG Y J , BAI S Z . Geometric analysis of ground-target coverage from a satellite by field-mapping method[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (8): 1469- 1480.
doi: 10.2514/1.G005719 |
| 27 | 龚宇鹏, 张世杰. 偶数重连续覆盖的Walker星座设计方法[J]. 宇航学报, 2022, 43 (9): 1163- 1175. |
| GONG Y P , ZHANG S J . Design method for even-fold continuous- coverage Walker constellation[J]. Journal of Astronautics, 2022, 43 (9): 1163- 1175. | |
| 28 | 林宗坚, 李德仁, 胥燕婴. 对地观测技术最新进展评述[J]. 测绘科学, 2011, 36 (4): 5- 8. |
| LIN Z J , LI D R , XU Y Y . General review on the new progress of Earth observations[J]. Science of Surveying and Mapping, 2011, 36 (4): 5- 8. | |
| 29 | ZHU Y H , WANG H , ZHANG J . Spacecraft multiple-impulse trajectory optimization using differential evolution algorithm with combined mutation strategies and boundary-handling schemes[J]. Mathematical Problems in Engineering, 2015, 2015, 949480. |
| 30 | 宋志明. 星座对地覆盖问题的形式化体系构建与求解算法研究[D]. 武汉: 中国地质大学, 2015: 51-54. |
| SONG Z M. Formal system construction and solving algorithm research for coverage problem of constellation to ground[D]. Wuhan: China University of Geosciences, 2015: 51-54. | |
| 31 |
HE X Y , LI H Y . General analysis method for global revisit characteristics of satellite constellation with repeating ground tracks[J]. Acta Astronautica, 2023, 202, 319- 332.
doi: 10.1016/j.actaastro.2022.10.051 |
| [1] | Mulai TAN, Dali DING, Lei XIE, Wei DING, Chenghui LYU. UCAV escape maneuvering decision based on fuzzy expert system and IDE algorithm [J]. Systems Engineering and Electronics, 2022, 44(6): 1984-1993. |
| [2] | Yunxiang CHEN, Yi RAO, Zhongyi CAI, Zezhou WANG. Remaining useful lifetime prediction and economic reserve strategy of equipment components based on improved similarity [J]. Systems Engineering and Electronics, 2021, 43(9): 2688-2696. |
| [3] | Wenhai WU, Xiaofeng GUO, Siyu ZHOU, Li GAO. Self-adaptive differential evolution algorithm with random neighborhood-based strategy and generalized opposition-based learning [J]. Systems Engineering and Electronics, 2021, 43(7): 1928-1942. |
| [4] | Wenhai WU, Xiaofeng GUO, Siyu ZHOU, Li GAO. Improved differential evolution algorithm for solving weapon-targetassignment problem [J]. Systems Engineering and Electronics, 2021, 43(4): 1012-1021. |
| [5] | Jun LUO, Jianqiang LIU, Yanan PANG. Multi-threshold image segmentation of 2D Otsu based on neighborhood search JADE [J]. Systems Engineering and Electronics, 2020, 42(10): 2164-2171. |
| [6] | LI Shihao, DING Yong, GAO Zhenlong. UAV air combat maneuvering decision based on intuitionistic fuzzy game theory [J]. Systems Engineering and Electronics, 2019, 41(5): 1063-1070. |
| [7] | LIU Han, YIN Cheng-you, LIU Wei. Optimization and design of wideband antenna with adaptive differential evolution algorithm based on hybrid coding method [J]. Systems Engineering and Electronics, 2016, 38(4): 773-777. |
| [8] | HAN Wei, SU Xi-chao, CHEN Jun-feng. Integrated maintenance support scheduling method of multi carrier aircrafts [J]. Systems Engineering and Electronics, 2015, 37(4): 809-816. |
| [9] | ZHANG Rui, GAO Hui, ZHANG Tao. Hybird optimization algorithm based on quantum and differential evolution for continuous space optimization [J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1288-1292. |
| [10] | LIN Lian-lei, YAN Fang, YANG Jing-li. Use of nested differential evolution algorithm to select microburst model’s parameters [J]. Journal of Systems Engineering and Electronics, 2012, 34(11): 2379-2383. |
| [11] | BAO Zi-yang, CHEN Ke-song, HE Zi-shu, HAN Chun-lin. Sparse circular arrays method based on modified DE algorithm [J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 497-499. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||