Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (7): 2216-2223.doi: 10.12305/j.issn.1001-506X.2025.07.15
• Systems Engineering • Previous Articles
Jiahao LIU1, Renjie XU1,2,*, Maotong SUN2, Jiuyao JIANG1, Jichao LI1, Kewei YANG1
Received:
2023-05-29
Online:
2025-07-16
Published:
2025-07-22
Contact:
Renjie XU
CLC Number:
Jiahao LIU, Renjie XU, Maotong SUN, Jiuyao JIANG, Jichao LI, Kewei YANG. Reinforcement learning-based resilience optimization method of equipment system-of-systems[J]. Systems Engineering and Electronics, 2025, 47(7): 2216-2223.
Table 3
Resilience values with different recovery strategies"
扰动场景 | 恢复策略 | 节点恢复顺序 | 韧性值 | 提升比例/% |
扰动场景1 | 基于强化学习的恢复策略 | D1→I3→I1→D2→S1→I4→S2→I6 | 0.569 | 71.38 |
基于节点能力重要度优先恢复策略 | D2→D1→I3→S1→I1→S2→I4→I6 | 0.519 | 56.32 | |
基于度优先恢复策略 | D2→D1→I4→I6→I3→S1→S2→I1 | 0.431 | 29.81 | |
随机恢复策略 | S2→I4→I3→S1→D1→I6→I1 | 0.332 | 0.00 | |
扰动场景2 | 基于强化学习的恢复策略 | S4→I5→S3→D3→I3→I4→S2→I6 | 0.528 | 67.61 |
基于节点能力重要度优先恢复策略 | S4→D3→I5→I3→S2→S3→I4→I6 | 0.447 | 41.90 | |
基于度优先恢复策略 | D3→S4→I5→S3→I4→I6→I3→S2 | 0.475 | 50.79 | |
随机恢复策略 | I4→I5→D3→I6→S3→S4→I3→S2 | 0.315 | 0.00 | |
扰动场景3 | 基于强化学习的恢复策略 | S4→D1→S3→I5→D3→S1→D2→I4 | 0.466 | 85.65 |
基于节点能力重要度优先恢复策略 | D2→D1→S4→D3→I5→S1→S3→I4 | 0.339 | 35.05 | |
基于度优先恢复策略 | D2→D1→D3→S3→S4→I4→I5→S1 | 0.306 | 21.91 | |
随机恢复策略 | D3→S1→I4→S3→D1→D2→I5 | 0.251 | 0.00 |
1 | 杨晓光, 高自友, 盛昭瀚, 等. 复杂系统管理是中国特色管理学体系的重要组成部分[J]. 管理世界, 2022, 38 (10): 1- 24. |
YANG X G , GAO Z Y , SHENG Z H , et al. Complex system management is an important part of the management system with Chinese characteristics[J]. Journal of Management World, 2022, 38 (10): 1- 24. | |
2 | GRIFFITH G P , HOP H , VIHTAKARI M , et al. Ecological resilience of arctic marine food webs to climate change[J]. Nature Climate Change, 2019, 9 (11): 868- 872. |
3 | HOLLING C S . Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4 (1): 1- 23. |
4 | MADNI A M , JACKSON S . Towards a conceptual framework for resilience engineering[J]. IEEE Systems Journal, 2009, 3 (2): 181- 191. |
5 | Federal Financial Institutions Examination Council. Business continuity planning[R]. Washington: Federal Financial Institutions Examination Council, 2015. |
6 | U.S. Department of Defense. Space policy[R]. Washington: U.S. Department of Defense, 2012. |
7 | MATTIS J. Summary of the 2018 national defense strategy of the United States of America[R]. Washington: U.S. Department of Defense, 2018. |
8 | DEPTULA D, HEATHER P, LAWRENCE S, et al. Restoring America's military competitiveness: mosaic warfare[R]. Arlington: Mitchell Institute for Aerospace Studies, 2019. |
9 | 荣明, 胡晓峰, 杨镜宇. 基于试验床的作战体系弹性评估研究[J]. 系统仿真学报, 2018, 30 (12): 4711- 4717. |
RONG M , HU X F , YANG J Y . Research on assessment of operation system's resilience based on test bed[J]. Journal of System Simulation, 2018, 30 (12): 4711- 4717. | |
10 |
王宏宇, 吴纬, 魏艳艳. 基于超网络模型武器装备体系抗毁性分析[J]. 系统工程与电子技术, 2017, 39 (8): 1782- 1787.
doi: 10.3969/j.issn.1001-506X.2017.08.17 |
WANG H Y , WU W , WEI Y Y , et al. Weapon system- of-systems invulnerability analysis based on super network model[J]. Systems Engineering and Electronics, 2017, 39 (8): 1782- 1787.
doi: 10.3969/j.issn.1001-506X.2017.08.17 |
|
11 | 荣明, 胡晓峰, 杨镜宇. 基于动态超网的作战体系结构弹性分析评估研究[J]. 系统仿真学报, 2019, 31 (6): 1055- 1061. |
RONG M , HU X F , YANG J Y . Resilience analysis and evaluation of combat system of systems architecture based on dynamic super network[J]. Journal of System Simulation, 2019, 31 (6): 1055- 1061. | |
12 |
陈志伟, 王靖, 谷长超, 等. 考虑动态重构的装备体系可用性及弹性分析[J]. 系统工程与电子技术, 2021, 43 (8): 2347- 2354.
doi: 10.12305/j.issn.1001-506X.2021.08.38 |
CHEN Z W , WANG J , GU C C , et al. Performance availability and resilience analysis of weapon system of systems considering dynamic reconfiguration[J]. Systems Engineering and Electronics, 2021, 43 (8): 2347- 2354.
doi: 10.12305/j.issn.1001-506X.2021.08.38 |
|
13 | PAN X , WANG H X , YANG Y J , et al. Resilience based importance measure analysis for SoS[J]. Journal of Systems Engineering and Electronics, 2019, 30 (5): 920- 930. |
14 | 李际超, 吴俊, 谭跃进, 等. 基于有向自然连通度的作战网络抗毁性研究[J]. 复杂系统与复杂性科学, 2015, 12 (4): 25- 31. |
LI J C , WU J , TAN Y J , et al. Robustness of combat networks based on directed natural connectivity[J]. Complex Systems and Complexity Science, 2015, 12 (4): 25- 31. | |
15 |
赵丹玲, 谭跃进, 李际超, 等. 基于作战环的武器装备体系贡献度评估[J]. 系统工程与电子技术, 2017, 39 (10): 2239- 2247.
doi: 10.3969/j.issn.1001-506X.2017.10.13 |
ZHAO D L , TAN Y J , LI J C , et al. Armament system of systems contribution evaluation based on operation loop[J]. Systems Engineering and Electronics, 2017, 39 (10): 2239- 2247.
doi: 10.3969/j.issn.1001-506X.2017.10.13 |
|
16 | JIANG J Y , LI J C , YANG K W . Weapon system portfolio selection based on structural robustness[J]. Journal of Systems Engineering and Electronics, 2020, 31 (6): 1216- 1229. |
17 | LI J C , JIANG J , YANG K W , et al. Research on functional robustness of heterogeneous combat networks[J]. IEEE Systems Journal, 2019, 13 (2): 1487- 1495. |
18 |
徐任杰, 宫琳, 谢剑, 等. 基于装备体系韧性的作战网络链路重要度评估及恢复策略[J]. 系统工程与电子技术, 2023, 45 (1): 139- 147.
doi: 10.12305/j.issn.1001-506X.2023.01.17 |
XU R J , GONG L , XIE J , et al. Operation network link importance evaluation and recovery strategy based on equipment system-of-system resilience[J]. Systems Engineering and Electronics, 2023, 45 (1): 139- 147.
doi: 10.12305/j.issn.1001-506X.2023.01.17 |
|
19 | CHEN Z W , HONG D P , CUI W W , et al. Resilience evaluation and optimal design for weapon system of systems with dynamic reconfiguration[J]. Reliability Engineering & System Safety, 2023, 237, 109409. |
20 | SUN Q , LI H X , WANG Y Z , et al. Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems[J]. Reliability Engineering & System Safety, 2022, 222, 108426. |
21 | HAN Q , PANG B , LI S , et al. Evaluation method and optimization strategies of resilience for air & space defense system of systems based on kill network theory and improved self-information quantity[J]. Defense Technology, 2023, 21 (3): 219- 239. |
22 |
潘星, 张国忠, 张跃东, 等. 工程弹性系统与系统弹性理论研究综述[J]. 系统工程与电子技术, 2019, 41 (9): 2006- 2015.
doi: 10.3969/j.issn.1001-506X.2019.09.13 |
PAN X , ZHANG G Z , ZHANG Y D , et al. Review of engineered resilient systems and system resilience theory[J]. Systems Engineering and Electronics, 2019, 41 (9): 2006- 2015.
doi: 10.3969/j.issn.1001-506X.2019.09.13 |
|
23 | PAN X , DANG Y H , WANG H X , et al. Resilience model and recovery strategy of transportation network based on travel OD-grid analysis[J]. Reliability Engineering & System Safety, 2022, 223, 108483. |
24 | CARES J R . Distributed networked operations the foundations of network centric warfare[M]. Newport: Alidade Press, 2004. |
25 | CARES J R. An information age combat model[C]//Proc. of the 9th International Command and Control Research and Technology Symposium, 2004. |
26 | 谭跃进, 张小可, 杨克巍. 武器装备体系网络化描述与建模方法[J]. 系统管理学报, 2012, 21 (6): 781- 786. |
TAN Y J , ZHANG X K , YANG K W . Research on networked description and modeling methods of armament system-of-systems[J]. Journal of Systems & Management, 2012, 21 (6): 781- 786. | |
27 | SUGIYAMA T , SCHWEIGHOFER N , IZAWA J . Reinforcement learning establishes a minimal metacognitive process to monitor and control motor learning performance[J]. Nature Communications, 2023, 1 (1): 3988. |
28 | 李凯文, 张涛, 王锐, 等. 基于深度强化学习的组合优化研究进展[J]. 自动化学报, 2021, 47 (11): 2521- 2537. |
LI K W , ZHANG T , WANG R , et al. Research reviews of combinatorial optimization methods based on deep reinforcement learning[J]. Acta Automatica Sinica, 2021, 47 (11): 2521- 2537. | |
29 | ZENG C Y , LIU H F , LU L N , et al. SHATTER: searching heterogeneous combat network attack sequences through network embedding and reinforcement learning[J]. IEEE Systems Journal, 2023, 17 (3): 4497- 4508. |
30 | GARG S , HU J , FORTINO G , et al. Editorial deep reinforcement learning for next-generation IoT networks[J]. Computer Networks, 2023, 228, 109760. |
[1] | Xiaowei FU, Xinyi WANG, Zhe QIAO. Attack-defense confrontation strategy of multi-UAV based on APIQ algorithm [J]. Systems Engineering and Electronics, 2025, 47(7): 2205-2215. |
[2] | Xiaowei FU, Xinyi WANG, Zhe QIAO. Confront strategy of multi-unmanned aerial vehicle based on ASDDPG algorithm [J]. Systems Engineering and Electronics, 2025, 47(6): 1867-1879. |
[3] | Linzhi MENG, Xiaojuan SUN, Yuxin HU, Bin GAO, Guoqing SUN, Wenhao MU. Reinforcement learning task scheduling algorithm for satellite on-orbit processing [J]. Systems Engineering and Electronics, 2025, 47(6): 1917-1929. |
[4] | Kangjie ZHENG, Xinyu ZHANG, Weisong WANG, Zhensheng LIU. Intelligent ship dynamic autonomous obstacle avoidance decision based on DQN and rule [J]. Systems Engineering and Electronics, 2025, 47(6): 1994-2001. |
[5] | Shuhan LIU, Tong LI, Fuqiang LI, Chungang YANG. Intent and situation-dual driven anti-jamming communication mechanism for data link [J]. Systems Engineering and Electronics, 2025, 47(6): 2055-2064. |
[6] | Zhikang LIN, Longfei SHI, Jialei LIU, Jiazhi MA. Scintillation detection scheduling method of netted radar based on deep Q-learning [J]. Systems Engineering and Electronics, 2025, 47(5): 1443-1452. |
[7] | Ziyi WANG, Xiongjun FU, Jian DONG, Cheng FENG. Optimization of radar collaborative anti-jamming strategies based on hierarchical multi-agent reinforcement learning [J]. Systems Engineering and Electronics, 2025, 47(4): 1108-1114. |
[8] | Wei XIONG, Dong ZHANG, Zhi REN, Shuheng YANG. Research on intelligent decision-making methods for coordinated attack by manned aerial vehicles and unmanned aerial vehicles [J]. Systems Engineering and Electronics, 2025, 47(4): 1285-1299. |
[9] | Peng MA, Rui JIANG, Bin WANG, Mengfei XU, Changbo HOU. Strategy reconstruction for resilience against intelligence jamming based on implicit opponent modeling [J]. Systems Engineering and Electronics, 2025, 47(4): 1355-1363. |
[10] | Kaiqiang TANG, Huiqiao FU, Jiasheng LIU, Guizhou DENG, Chunlin CHEN. Hierarchical optimization research of constrained vehicle routing based on deep reinforcement learning [J]. Systems Engineering and Electronics, 2025, 47(3): 827-841. |
[11] | Xiarong CHEN, Jichao LI, Gang CHEN, Peng LIU, Jiang JIANG. Portfolio of weapon system-of-systems based on heterogeneous information networks [J]. Systems Engineering and Electronics, 2025, 47(3): 855-861. |
[12] | Ke FU, Hao CHEN, Yu WANG, Quan LIU, Jian HUANG. Uncertainty-based Bayesian policy reuse method [J]. Systems Engineering and Electronics, 2025, 47(2): 535-543. |
[13] | Xiaolin LIU, Mengjiao GUO, Zhuo LI. Adaptive graph convolutional recurrent network prediction method for flight delay based on Dueling DQN optimization [J]. Systems Engineering and Electronics, 2025, 47(2): 568-579. |
[14] | Xunliang YAN, Kuan WANG, Zijian ZHANG, Peichen WANG. Reentry guidance method based on LSTM-DDPG [J]. Systems Engineering and Electronics, 2025, 47(1): 268-279. |
[15] | Tingyu ZHANG, Ying ZENG, Nan LI, Hongzhong HUANG. Spacecraft power-signal composite network optimization algorithm based on DRL [J]. Systems Engineering and Electronics, 2024, 46(9): 3060-3069. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||