Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (6): 2002-2014.doi: 10.12305/j.issn.1001-506X.2025.06.28
• Guidance, Navigation and Control • Previous Articles Next Articles
Xinyun ZHAO, Chunlei XIE
Received:
2024-08-23
Online:
2025-06-25
Published:
2025-07-09
Contact:
Chunlei XIE
CLC Number:
Xinyun ZHAO, Chunlei XIE. Flight path following robust control method for stratospheric airship[J]. Systems Engineering and Electronics, 2025, 47(6): 2002-2014.
2 | 杨晓伟. 风场中平流层飞艇轨迹智能控制方法[D]. 长沙: 国防科技大学, 2020. |
YANG X W. Intelligent trajectory control methods for stratospheric airships in wind field[D]. Changsha: National University of Defense Technology, 2020. | |
3 | 赵达, 刘东旭, 孙康文, 等. 平流层飞艇研制现状、技术难点及发展趋势[J]. 航空学报, 2016, 37 (1): 45- 56. |
ZHAO D , LIU D X , SUN K W , et al. Research status, technical difficulties and development trend of stratospheric airship[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (1): 45- 56. | |
4 | 杨希祥, 杨晓伟, 邓小龙. 反步法与神经网络融合的平流层飞艇轨迹鲁棒控制方法[J]. 宇航学报, 2021, 42 (3): 351- 358. |
YANG X X , YANG X W , DENG X L . Robust trajectory control method for stratopheric airships with combintion of backstepping and neural network[J]. Acta Astronautica, 2021, 42 (3): 351- 358. | |
5 | 杨希祥, 张家实. 风场中平流层飞艇轨迹跟踪的滑模控制方法[J]. 国防科技大学学报, 2019, 41 (1): 1- 4. |
YANG X X , ZHANG J S . Sliding mode control for trajectory tracking of stratospheric airships in wind field[J]. Journal of National University of Defense Technology, 2019, 41 (1): 1- 4. | |
6 |
CHENG L , ZUO Z Y , SONG J W , et al. Robust three-dimensional path-following control for an under-actuated stratospheric airship[J]. Advances in Space Research, 2019, 63 (1): 526- 538.
doi: 10.1016/j.asr.2018.09.008 |
7 |
WANG J , MENG X Y , WU G H . Path following of the autonomous airship with compensation of unknown wind and modeling uncertainties[J]. Aerospace Science and Technology, 2019, 93, 105349.
doi: 10.1016/j.ast.2019.105349 |
8 |
LIU S Q , SANG Y J . Underactuated stratospheric airship trajectory control using an adaptive integral backstepping approach[J]. Journal of Aircraft, 2018, 55 (6): 2357- 2371.
doi: 10.2514/1.C034923 |
9 |
ADAMSKI W , PAZDERSKI D , HERMAN P . Robust 3D tracking control of an underactuated autonomous airship[J]. IEEE Robo-tics and Automation Letters, 2020, 5 (3): 4281- 4288.
doi: 10.1109/LRA.2020.2994484 |
10 |
LOU W J , ZHU M , GUO X , et al. Command filtered sliding mode trajectory tracking control for unmanned airships based on RBFNN approximation[J]. Advances in Space Research, 2019, 63 (3): 1111- 1121.
doi: 10.1016/j.asr.2018.10.017 |
11 |
YANG Y N , YAN Y . Neural network approximation-based nonsingular terminal sliding mode control for trajectory tracking of robotic airships[J]. Aerospace Science and Technology, 2016, 54, 192- 197.
doi: 10.1016/j.ast.2016.04.021 |
12 |
SAEED A , LIU Y , SHAH M Z , et al. Higher order sliding mode based lateral guidance and control of finless airship[J]. Aerospace Science and Technology, 2021, 113, 106670.
doi: 10.1016/j.ast.2021.106670 |
13 |
LIU S Q , SANG Y J , WHIDBORNE J F . Adaptive sliding-mode- backstepping trajectory tracking control of underactuated airships[J]. Aerospace Science and Technology, 2020, 97, 105610.
doi: 10.1016/j.ast.2019.105610 |
14 |
LIU S Q , WHIDBORNE J F , HE L . Backstepping sliding-mode control of stratospheric airships using disturbance-observer[J]. Advances in Space Research, 2021, 67 (3): 1174- 1187.
doi: 10.1016/j.asr.2020.10.047 |
15 |
LIU Y , SAEED A , SHAH M Z , et al. Sliding mode lateral stand-off tracking control of finless airship[J]. Aerospace Science and Technology, 2021, 119, 107164.
doi: 10.1016/j.ast.2021.107164 |
16 |
GOU H B , ZHU M , ZHENG Z W , et al. Adaptive fault-tole-rant control for stratospheric airships with full-state constraints, input saturation, and external disturbances[J]. Advances in Space Research, 2022, 69 (1): 701- 717.
doi: 10.1016/j.asr.2021.09.015 |
17 |
YUAN J C , GUO X , ZHENG Z W , et al. Error-constrained fixed-time trajectory tracking control for a stratospheric airship with disturbances[J]. Aerospace Science and Technology, 2021, 118, 107055.
doi: 10.1016/j.ast.2021.107055 |
18 |
CHEN T , ZHU M , ZHENG Z W . Adaptive path following control of a stratospheric airship with full-state constraint and actuator saturation[J]. Aerospace Science and Technology, 2019, 95, 105457.
doi: 10.1016/j.ast.2019.105457 |
1 |
洪陆合, 林献武, 兰维瑶. 基于奇异摄动法的平流层飞艇水平面轨迹优化[J]. 系统工程与电子技术, 2014, 36 (4): 728- 733.
doi: 10.3969/j.issn.1001-506X.2014.04.20 |
HONG L H , LIN X W , LAN W Y . Trajectory optimization of stratosphere airship in horizontal based on singular perturbation metod[J]. Systems Engineering and Electronics, 2014, 36 (4): 728- 733.
doi: 10.3969/j.issn.1001-506X.2014.04.20 |
|
19 |
YANG X W , YANG X X , DENG X L . Horizontal trajectory control of stratospheric airships in wind field using Q-learning algorithm[J]. Aerospace Science and Technology, 2020, 106, 106100.
doi: 10.1016/j.ast.2020.106100 |
20 |
AZINHEIRA J R , PAIVA E C , BUENO S S . Influence of wind speed on airship dynamics[J]. Journal of Guidance, Control and Dynamics, 2002, 25 (6): 1116- 1124.
doi: 10.2514/2.4991 |
21 |
FOSSEN T I , PETTERSEN K Y . On uniform semiglobal exponential stability (USGES) of proportional line-of-sight gui-dance laws[J]. Automatica, 2014, 50 (11): 2912- 2917.
doi: 10.1016/j.automatica.2014.10.018 |
22 |
LEKKAS A M , FOSSEN T I . Integral LOS path following for curved paths based on a monotone cubic hermite spline parametrization[J]. IEEE Trans.on Control Systems Technology, 2014, 22 (6): 2287- 2301.
doi: 10.1109/TCST.2014.2306774 |
23 |
LIU L , WANG D , PENG Z H . ESO-based line-of-sight gui-dance law for path following of underactuated marine surface vehicles with exact sideslip compensation[J]. IEEE Journal of Oceanic Engineering, 2017, 42 (2): 477- 487.
doi: 10.1109/JOE.2016.2569218 |
24 |
LIU L , WANG D , PENG Z H . Coordinated path following of multiple underacutated marine surface vehicles along one curve[J]. ISA Transactions, 2016, 64, 258- 268.
doi: 10.1016/j.isatra.2016.04.013 |
25 |
XIONG S F , WANG W H , LIU X D , et al. A novel extended state observer[J]. ISA Transactions, 2015, 58, 309- 317.
doi: 10.1016/j.isatra.2015.07.012 |
26 |
FENG Y , YU X H , MAN Z H . Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38 (12): 2159- 2167.
doi: 10.1016/S0005-1098(02)00147-4 |
27 | 梅红, 王勇. 快速收敛的机器人滑模变结构控制[J]. 信息与控制, 2009, 38 (5): 552- 557. |
MEI H , WANG Y . Fast convergent sliding mode variable structure control of robot[J]. Information and Control, 2009, 38 (5): 552- 557. |
[1] | Zhengliang LU, Jiatong LI, Yuandong HU, Wenhe LIAO. Attitude dynamics and aerodynamic compensation control of low-orbit mass moment spacecraft [J]. Systems Engineering and Electronics, 2025, 47(6): 1975-1984. |
[2] | Bo GUO, Ming TIE, Wenhui FAN, Chuanxu LI. Cooperative guidance method of high lift-to-drag ratio aircraft based on sliding mode control [J]. Systems Engineering and Electronics, 2025, 47(2): 580-590. |
[3] | Wenwen ZHANG, Cheng ZHANG, Chenming ZHENG, Runbei CHENG, Tianle CHEN. Design of improved line-of-sight guidance law based on aircraft visual information [J]. Systems Engineering and Electronics, 2024, 46(8): 2779-2788. |
[4] | Dengfeng YANG, Xiaodong YAN. Cooperative active defense guidance strategy for aircraft-defenders based on cooperative LOS and DMPC [J]. Systems Engineering and Electronics, 2024, 46(5): 1724-1733. |
[5] | Xinyun ZHAO, Jianqiao YU. Multi-source force combined control method for novel agile projectiles [J]. Systems Engineering and Electronics, 2024, 46(5): 1734-1744. |
[6] | Qiushi ZHENG, Weichun XU, Minghan ZHAO, Naixing LI, Xuxin BAO. Research on roll control technology of trajectory correction fuse with active-canards [J]. Systems Engineering and Electronics, 2024, 46(4): 1412-1421. |
[7] | Yang GUI, Bochao ZHENG, Peng GAO. Sliding mode attitude control of quadrotor UAV based on NESO-LFDC [J]. Systems Engineering and Electronics, 2024, 46(3): 1075-1083. |
[8] | Yushi JIANG, Yang CHEN, Lu GAO, Ligen CAI, Jixing LYU. Predefined-time adaptive control for heavy-lift launch vehicles [J]. Systems Engineering and Electronics, 2023, 45(8): 2570-2577. |
[9] | Fangjun LI, Shengjie WANG, Junfeng LI, Hao LI, Chenjun CUI. Robust control of servo system with backlash based on new reaching law [J]. Systems Engineering and Electronics, 2023, 45(4): 1177-1184. |
[10] | Haoran LU, Wei ZHENG, Xiaohua CHANG. Fractional order sliding mode guidance law based on robust exact differentiator [J]. Systems Engineering and Electronics, 2023, 45(1): 175-183. |
[11] | Shibin LUO, Xiaodong LI, Zhongsen WANG, Cheng XU. Generalized super-twisting finite-time control for the ascent phase of parallel carrier [J]. Systems Engineering and Electronics, 2022, 44(5): 1626-1635. |
[12] | Junbao WEI, Haiyan LI, Jing LI. Novel backstepping control for hypersonic vehicle with angle of attack constraint [J]. Systems Engineering and Electronics, 2022, 44(4): 1310-1317. |
[13] | Xiao TANG, Jikun YE, Xu LI. Design of 3D nonlinear prescribed performance guidance law [J]. Systems Engineering and Electronics, 2022, 44(2): 619-627. |
[14] | Wenqi YANG, Jianhua LU, Xu JIANG, Yuanxin WANG. Design of quadrotor attitude active disturbance rejection controller based on improved ESO [J]. Systems Engineering and Electronics, 2022, 44(12): 3792-3799. |
[15] | Haixiang XU, Cong HU, Wenzhao YU, Guoquan YAO. Variable depth control of buoyancy regulated UUV with input constraints [J]. Systems Engineering and Electronics, 2022, 44(11): 3496-3504. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||