Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (3): 1010-1018.doi: 10.12305/j.issn.1001-506X.2025.03.33
• Communications and Networks • Previous Articles
Lin CHENG1,2,3, Wei GE1,2,3,4,*, Wei MEN5
Received:
2023-12-12
Online:
2025-03-28
Published:
2025-04-18
Contact:
Wei GE
CLC Number:
Lin CHENG, Wei GE, Wei MEN. MIMO spread spectrum deep-sea underwater acoustic communication method based on M-ary cyclic shift keying[J]. Systems Engineering and Electronics, 2025, 47(3): 1010-1018.
16 | LIU F , ZHENG Y F , FENG Y X . High performance bitactivation code index modulation method[J]. IET Signal Processing, 2023, 17 (4): 2202. |
17 |
WU J Q , QIAO G , KANG P B . Emerging 5G multicarrier chaotic sequence spread spectrum technology for underwater acoustic communication[J]. Complexity, 2018, 2018, 3790529.
doi: 10.1155/2018/3790529 |
18 |
景连友, 何成兵, 黄建国, 等. 正交频分复用循环移位扩频水声通信[J]. 系统工程与电子技术, 2015, 37 (1): 185- 190.
doi: 10.3969/j.issn.1001-506X.2015.01.30 |
JING L Y , HE C B , HUANG J G , et al. OFDM cyclic shift keying spread spectrumunderwater acoustic communication[J]. Systems Engineering and Electronics, 2015, 37 (1): 185- 190.
doi: 10.3969/j.issn.1001-506X.2015.01.30 |
|
19 |
ZHOU S L , GIANNAKIS G B , SWAMI A . Digital multi-carrier spread spectrum versus direct sequence spread spectrum for resistance to jamming and multipath[J]. IEEE Trans.on Communications, 2002, 50 (4): 643- 655.
doi: 10.1109/26.996079 |
20 |
高潭, 吕成财, 田川. 面向OFDM-MFSK水声通信的差错控制方法[J]. 系统工程与电子技术, 2022, 44 (5): 1701- 1708.
doi: 10.12305/j.issn.1001-506X.2022.05.33 |
GAO T , LYU C C , TIAN C . Error control method for OFDM-MFSK underwater acoustic communication[J]. Systems Engineering and Electronics, 2022, 44 (5): 1701- 1708.
doi: 10.12305/j.issn.1001-506X.2022.05.33 |
|
21 |
ZHOU Y H , TONG F , YANG X Y . Research on co-channel interference cancellation for underwater acoustic MIMO communications[J]. Remote Sensing, 2022, 14 (19): 5049.
doi: 10.3390/rs14195049 |
22 |
LI W Z , HAN X , ZHU G J , et al. Timedomain turbo equalization based on vector approximate message passing for multipleinput multipleoutput underwater acoustic communications[J]. Journal of the Acoustical Society of America, 2024, 155 (2): 854- 866.
doi: 10.1121/10.0024608 |
23 | 周锋. 水声扩频通信关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. |
ZHOU F. The study of the key technologies for underwater acoustic spreadspectrum communication[D]. Harbin: Harbin Engineering University, 2016. | |
24 |
QIN X , QU F , ZHENG Y R . Circular superposition spreadspectrum transmission for multipleinput multipleoutput underwater acoustic communications[J]. IEEE Communications Letters, 2019, 23 (8): 1385- 1388.
doi: 10.1109/LCOMM.2019.2917192 |
25 |
YANG T C . Spatially multiplexed CDMA multiuser underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2016, 41 (1): 217- 231.
doi: 10.1109/JOE.2015.2412993 |
26 | CHAHROUR H, RAJAN S, DANSEREAU R. Hybrid spread spectrum orthogonal waveforms for MIMO radar[C]//Proc. of the IEEE Radar Conference, 2018: 1010-1014. |
27 | DU P Y, WANG C, ZHU X H. Research on multiple input multiple output spread spectrum underwater acoustic communication[C]//Proc. of the 15th ACM International Conference on Underwater Networks & Systems, 2021: 22. |
28 |
SIDDIQUI S , DONG H . Time diversity passive time reversal for underwater acoustic communication[J]. IEEE Access, 2019, 7, 24258- 24266.
doi: 10.1109/ACCESS.2019.2898983 |
29 | 杜鹏宇. 移动扩频水声通信及多址技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
DU P Y. Research on mobile spread spectrum underwater acoustic communication and multiple access technology[D]. Harbin: Harbin Engineering University, 2016. | |
30 |
ZHAN J , WANG L , KATZ M , et al. A differential chaotic bitinterleaved coded modulation system over multipath Rayleigh channels[J]. IEEE Trans.on Communications, 2017, 65 (12): 5257- 5265.
doi: 10.1109/TCOMM.2017.2719030 |
1 | 许肖梅. 水声通信与水声网络的发展与应用[J]. 声学技术, 2009, 28 (6): 811- 816. |
XU X M . Development and applications of underwater acoustic communication and networks[J]. Technical Acoustics, 2009, 28 (6): 811- 816. | |
2 |
EBIHARA T , OGASAWARA H , LEUS G . Underwater acoustic communication using multiple-input-multiple-output Doppler resilient orthogonal signal division multiplexing[J]. IEEE Journal of Oceanic Engineering, 2020, 45 (4): 1594- 1610.
doi: 10.1109/JOE.2019.2922094 |
3 |
KOCHANSKA I , SALAMON R , SCHMIDT J H , et al. Study of the performance of DSSS UAC system depending on the system bandwidth and the spreading sequence[J]. Sensors, 2021, 21 (7): 2484.
doi: 10.3390/s21072484 |
4 |
SUN D J , WU J , HONG X P , et al. Iterative double-differential direct-sequence spread spectrum reception in underwater acoustic channel with time-varying Doppler shifts[J]. Journal of the Acoustical Society of America, 2023, 153 (2): 1027- 1041.
doi: 10.1121/10.0017116 |
5 | SCHMIDT J H , KOCHANSKA I , SCHMIDT A M . Perfor-mance of the direct sequence spread spectrum underwater acoustic communication system with differential detection in strong multipath propagation conditions[J]. Archives of Acoustics, 2024, 49 (1): 129- 140. |
6 |
HE C B , HUANG J G , YAN Z H , et al. M-ary CDMA multiuser underwater acoustic communication and its experimental results[J]. Science China-Information Sciences, 2011, 54 (8): 1747- 1755.
doi: 10.1007/s11432-011-4202-2 |
7 | HU Y H , HAN S P , LI H Q , et al. TCN-based M-ary mobile spread spectrum underwater acoustic communication[J]. Applied Acoustics, 2023, 211 (2): 109457. |
8 |
DU P Y , YIN J W , ZHOU H L , et al. Cyclic shift keying spread spectrum underwater acoustic communication using time reversal energy detector[J]. Acta Physica Sinica, 2016, 65 (1): 014302.
doi: 10.7498/aps.65.014302 |
9 |
WEI Y L , QUAN L M , XU W K , et al. An in-phase/quadrature index modulation aided spread spectrum communication system forunderwater acoustic communication[J]. Electronics, 2023, 12 (13): 2919.
doi: 10.3390/electronics12132919 |
10 |
RA H , YOUN C , KIM K . High-reliability underwater acoustic communication using an M-ary cyclic spread spectrum[J]. Electronics, 2022, 11 (11): 1698.
doi: 10.3390/electronics11111698 |
11 |
ZHOU F , LIU B , NIE D H , et al. M-ary cyclic shift keying spread spectrum underwater acoustic communications based on virtual timereversal mirror[J]. Sensors, 2019, 19 (16): 3577.
doi: 10.3390/s19163577 |
12 | 于洋, 周锋, 乔钢, 等. 正交M元码元移位键控扩频水声通信[J]. 声学学报, 2014, 39 (1): 42- 48. |
YU Y , ZHOU F , QIAO G . Orthogonal M-ary code shift keying spread spectrum underwater acoustic communication[J]. Acta Acustica, 2014, 39 (1): 42- 48. | |
13 | LI Y , JIA N , HUANG J C , et al. Improved parallel combinatory spread spectrum underwater acoustic communication based on gold codes[J]. Journal of Electronics & Information Technology, 2022, 44 (6): 1937- 1946. |
14 |
KADDOUM G , AHMED M F A , NIJSURE Y . Code index modulation: a high data rate and energy efficient communication system[J]. IEEE Communications Letters, 2015, 19 (2): 175- 178.
doi: 10.1109/LCOMM.2014.2385054 |
15 |
KADDOUM G , NIJSURE Y , TRAN H . Generalized code index modulation technique for high-data-rate communication systems[J]. IEEE Trans.on Vehicular Technology, 2016, 65 (9): 7000- 7009.
doi: 10.1109/TVT.2015.2498040 |
[1] | Jun CHI, Rongchen SUN, Zhiguo SUN, Zhenyu YI. Tunnel channel modeling based on propagation graph theory at 6 GHz [J]. Systems Engineering and Electronics, 2025, 47(1): 316-323. |
[2] | Lujie MA, Yan LIANG, Fei LI. Cascaded angle-based AIRS aided beam tracking scheme for massive MIMO system [J]. Systems Engineering and Electronics, 2024, 46(7): 2515-2524. |
[3] | Gong ZHANG, Yuwei TIAN, Jiawen YUAN, Yu ZHANG. A multi-view MIMO radar coincidence imaging algorithm research based on sparse reconstruction [J]. Systems Engineering and Electronics, 2024, 46(2): 470-477. |
[4] | Guangjia HUANG, Xu CHENG, Bin RAO, Wei WANG. One/multi-bit MIMO radar detection of a moving target based on generalized Rao test [J]. Systems Engineering and Electronics, 2024, 46(1): 105-112. |
[5] | Yuhang HAO, Wei JIANG, Zengfu WANG, Hua LAN, Ting YONG, Quan PAN. Distributed MIMO sky-wave over-the-horizon-radar simulation system [J]. Systems Engineering and Electronics, 2023, 45(7): 1981-1989. |
[6] | Hongfei LIAN, Jiamin LONG, Xueyao HU, Yanwen JIANG, Dongsheng LI, Hongqi FAN. Multi domain joint modulation waveform for automotive radar [J]. Systems Engineering and Electronics, 2023, 45(11): 3402-3410. |
[7] | Chao HUANG, Zhongrui HUANG, Qingsong ZHOU, Jianyun ZHANG. Transmit waveform design for MIMO radar communication system based on optimal constellation [J]. Systems Engineering and Electronics, 2023, 45(10): 3016-3023. |
[8] | Yan LYU, Fei CAO, Jianfeng XU, Xiaowei FENG. Robust beamforming algorithm for monostatic MIMO radar based on FRFT [J]. Systems Engineering and Electronics, 2023, 45(1): 79-85. |
[9] | Yuzhuo WANG, Shengqi ZHU, Ximin LI, Lan LAN. Range ambiguous clutter suppression for FDA MIMO bistatic radar with main lobe correction [J]. Systems Engineering and Electronics, 2022, 44(5): 1483-1494. |
[10] | Sheng CHEN, Yongbo ZHAO, Xiaojiao PANG, Yili HU, Chenghu CAO. Beam space refined maximum likelihood algorithm for VHF MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(5): 1520-1526. |
[11] | Yongzhi YU, Chunhong ZHANG, Hai HAO. Downlink energy efficiency optimization for massive MIMO systems with imperfect CSI [J]. Systems Engineering and Electronics, 2022, 44(5): 1694-1700. |
[12] | Xiaotong ZHAO, Jianjiang ZHOU. Improved MUSIC algorithm for MIMO radar with low intercept [J]. Systems Engineering and Electronics, 2022, 44(2): 490-497. |
[13] | Junkui TANG, Zheng LIU, Rong XIE, Bo ZENG. Optimal design method for sparse array of MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3661-3666. |
[14] | Zhiyuan YOU, Guoping HU, Hao ZHOU. Bistatic nested MIMO radar based on redundant element optimization joint estimation method of target DOD and DOA [J]. Systems Engineering and Electronics, 2022, 44(12): 3696-3702. |
[15] | Yaohua XU, Chenglong ZHU, Yi WANG, Fang JANG, Mengqin DING, Huiping WANG. Neural network-based algorithm for high-parallelism massive MIMO signal detection [J]. Systems Engineering and Electronics, 2022, 44(12): 3843-3849. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||