Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (1): 316-323.doi: 10.12305/j.issn.1001-506X.2025.01.32
• Communications and Networks • Previous Articles Next Articles
Jun CHI, Rongchen SUN, Zhiguo SUN, Zhenyu YI
Received:
2023-10-12
Online:
2025-01-21
Published:
2025-01-25
Contact:
Rongchen SUN
CLC Number:
Jun CHI, Rongchen SUN, Zhiguo SUN, Zhenyu YI. Tunnel channel modeling based on propagation graph theory at 6 GHz[J]. Systems Engineering and Electronics, 2025, 47(1): 316-323.
1 | 雷勇, 刘留, 陶成, 等. 基于测量的6 GHz频段大规模多天线信道容量的研究[J]. 电波科学学报, 2017, 32 (5): 545- 552. |
LEI Y , LIU L , TAO C , et al. Capacity on channel measurement at 6 GHz for massive MIMO system[J]. Chinese Journal of Radio Science, 2017, 32 (5): 545- 552. | |
2 | ZHOU Y Y, WANG Y H, LI Y X, et al. An improved equiangular division algorithm for SBR based ray tracing channel mo-deling[C]//Proc. of the IEEE 96th Vehicular Technology Confe-rence, 2022. |
3 | DOEKER T, BOBAN M, KURNER T. Performance and challenges of ray tracing-assisted device discovery for terahertz communications[C]//Proc. of the 17th European Conference on Antennas and Propagation, 2023. |
4 | JI X Y, WANG C X, CHANG H T. Characteristic analysis and mo-deling of underground space wireless communication channels[C]//Proc. of the IEEE 95th Vehicular Technology Conference, 2022. |
5 | QIN H, ZHANG X Q. Modeling of millimeter-wave propagation in tunnels with split-step parabolic equation method[C]//Proc. of the IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, 2022: 60-62. |
6 | ZHANG X Q , SARRIS C D . Vector parabolic equation based derivation of rectangular waveguide surrogate models of arched tunnels[J]. IEEE Trans.on Antennas and Propagation, 2017, 66 (3): 1392- 1403. |
7 |
ZHANG X Q , SOOD N , SIU J K , et al. A hybrid ray-tracing/vector parabolic equation method for propagation modeling in train communication channels[J]. IEEE Trans.on Antennas and Propagation, 2016, 64 (5): 1840- 1849.
doi: 10.1109/TAP.2016.2535125 |
8 |
XUE B Y , DUAN J W , YIN X F . A probabilistic propagation graph modeling method for channel characterization in dense urban environments[J]. IEEE Trans.on Antennas and Propagation, 2023, 71 (5): 4362- 4370.
doi: 10.1109/TAP.2023.3242111 |
9 | 王冬冬, 尹学锋. 基于传播图论的车到地通信场景毫米波信道建模[C]//中国信息通信大会论文集, 2019: 143-146. |
WANG D D, YIN X F. Millimeter wave channel modeling for vehicle-to-ground communication scenarios based on propagation graph theory[C]//Proc. of the China Information and Communication Conference, 2019: 143-146. | |
10 | SUTO K, BANNAI S, SATO K, et al. Propagation graph representation learning and its implementation in direct path representation[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2023. |
11 | TIAN L, YIN X F, ZOU Q, et al. Channel modeling based on random propagation graphs for high speed railway scenarios[C]// Proc. of the IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, 2012: 1746-1750. |
12 | HAN B T , ZHANG J C , LIU L , et al. Position-based wireless channel characterization for the high-speed vactrains in vacuum tube scenarios using propagation graph modeling theory[J]. Radio Science, 2020, 55 (4): 1- 12. |
13 |
GAN M M , STEINBOCK G , XU Z N , et al. A hybrid ray and graph model for simulating vehicle-to-vehicle channels in tunnels[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (9): 7955- 7968.
doi: 10.1109/TVT.2018.2839980 |
14 | ZHANG J C, TAO C, LIU L, et al. A study on channel modeling in tunnel scenario based on propagation-graph theory[C]// Proc. of the IEEE 83rd Vehicular Technology Conference, 2016. |
15 | PEDERSEN T, FLEURY B H. Radio channel modelling using stochastic propagation graphs[C]//Proc. of the IEEE International Conference on Communications, 2007: 2733-2738. |
16 | HE Z L, YU H X. A graph theoretic method for modeling urban scenarios radio wave propagation[C]//Proc. of the 10th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2013: 226-230. |
17 | ZHANG J C, LIU L, et al. A semi-deterministic MIMO-based beam channel model of ray-tracing and propagation-graph for mmWave communications[C]// Proc. of the IEEE International Conference on Communications Workshops, 2022: 1135-1140. |
18 |
ADEOGUN R , PEDERSEN T , GUSTAFSON C , et al. Polari- metric wireless indoor channel modelling based on propagation graph[J]. IEEE Trans.on Antennas and Propagation, 2019, 67 (10): 6585- 6595.
doi: 10.1109/TAP.2019.2925128 |
19 | 张超, 尹学锋, 余子明. 粗糙表面毫米波传播信道特性研究及图论建模[J]. 电波科学学报, 2017, 32 (5): 529- 535. |
ZHANG C , YIN X F , YU Z M . Characteristics of millimeter-wave propagation channels and the graph models under the impact of rough surfaces[J]. Chinese Journal of Radio Science, 2017, 32 (5): 529- 535. | |
20 |
ADEOGUN R , BHARTI A , PEDERSEN T . An iterative transfer matrix computation method for propagation graphs in multi-room environments[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (4): 616- 620.
doi: 10.1109/LAWP.2019.2898641 |
21 | 张嘉驰, 陶成, 孙溶辰, 等. 基于传播图理论的隧道场景无线信道模型构建与验证[J]. 铁道学报, 2016, 38 (10): 46- 54. |
ZHANG J C , TAO C , SUN R C , et al. Construction and verification of wireless channel model in tunnel scenarios based on propagation graph theory[J]. Journal of the China Railway Society, 2016, 38 (10): 46- 54. | |
22 |
SOUIHLI O , OHTSUKI T . Benefits of rich scattering in MIMO channels: a graph-theoretical perspective[J]. IEEE Communications Letters, 2013, 17 (1): 23- 26.
doi: 10.1109/LCOMM.2012.120312.121184 |
23 | ZHOU S, OU G, TANG X M, et al. Hybrid channel modeling and multi-frequency propagation characterization for GNSS in urban canyons[C]//Proc. of the China Satellite Navigation Conference, 2022: 541-550. |
24 |
ZHANG J C , LIU L , TAN Z H , et al. A 3-D semi-deterministic MIMO beam channel model for cellular-assisted millimeter-wave vehicular communications[J]. IEEE Trans.on Antennas and Propagation, 2023, 71 (4): 3546- 3560.
doi: 10.1109/TAP.2023.3242114 |
25 |
TIAN L , DEGLI E V , VITUCCI E M , et al. Semi-deterministic radio channel modeling based on graph theory and ray-tracing[J]. IEEE Trans.on Antennas and Propagation, 2016, 64 (6): 2475- 2486.
doi: 10.1109/TAP.2016.2546950 |
26 | BHARTI A , BRIOL F X , PEDERSEN T . A general method for calibrating stochastic radio channel models with kernels[J]. IEEE Trans.on antennas and propagation, 2021, 70 (6): 3986- 4001. |
27 | PRULLER R, PRATSCHNER S, LANGWIESER R, et al. Propagation graphs for UWB MIMO channels: modeling and experimental validation[C]//Proc. of the 16th European Conference on Antennas and Propagation, 2022. |
28 | ZHANG J C , LIU L , TAN Z H , et al. Analysis on millimeter-wave channel dispersion over nonreciprocal beam patterns based on the propagation-graph model[J]. Journal of Circuits, Systems and Computers, 2023, 32 (7): 235- 241. |
29 | 刘留, 刘妍, 雷勇, 等. 采用传播图论建模方法的Massive MIMO室内场景传播特性[J]. 北京交通大学学报, 2018, 42 (2): 38- 45. |
LIU L , LIU Y , LEI Y , et al. Massive MIMO propagation characteristics in indoor scenario based on propagation graph modeling[J]. Journal of Beijing Jiaotong University, 2018, 42 (2): 38- 45. | |
30 |
FLEURY B H , TSCHUDIN M , HEDDERGOTT R , et al. Channel parameter estimation in mobile radio environments using the SAGE algorithm[J]. IEEE Journal on Selected Areas in Communications, 1999, 17 (3): 434- 450.
doi: 10.1109/49.753729 |
31 | 曾成胜, 单馨漪, 何丹萍, 等. 基于5G-R系统的高铁站台场景信道特性[J]. 太赫兹科学与电子信息学报, 2022, 20 (8): 769- 774. |
ZENG C S , SHAN X Y , HE D P , et al. Channel characteristics of high-speed railway platform scenario based on 5G for railway system[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20 (8): 769- 774. | |
32 | 杨晨, 谢顺钦, 邱睿, 等. 基于信道特征高精度提取的空地信道密钥量化[J]. 太赫兹科学与电子信息学报, 2023, 21 (11): 1306- 1317. |
YANG C , XIE S Q , QIU R , et al. Air-to-ground wireless channel key quantization based on high-precision extraction of channel characteristics[J]. Journal of Terahertz Science and Electronic Information Technology, 2023, 21 (11): 1306- 1317. | |
33 | LIU Y , YIN X F , YE X K , et al. Embedded propagation graph model for reflection and scattering and its millimeter-wave measurement-based evaluation[J]. IEEE Open Journal of Antennas and Propagation, 2021, 2, 191- 202. |
34 | TRUONG K T , HEATH R . Effects of channel aging in massive MIMO systems[J]. Journal of Communications and Networks, 2013, 15 (4): 338- 351. |
[1] | Lujie MA, Yan LIANG, Fei LI. Cascaded angle-based AIRS aided beam tracking scheme for massive MIMO system [J]. Systems Engineering and Electronics, 2024, 46(7): 2515-2524. |
[2] | Gong ZHANG, Yuwei TIAN, Jiawen YUAN, Yu ZHANG. A multi-view MIMO radar coincidence imaging algorithm research based on sparse reconstruction [J]. Systems Engineering and Electronics, 2024, 46(2): 470-477. |
[3] | Guangjia HUANG, Xu CHENG, Bin RAO, Wei WANG. One/multi-bit MIMO radar detection of a moving target based on generalized Rao test [J]. Systems Engineering and Electronics, 2024, 46(1): 105-112. |
[4] | Yuhang HAO, Wei JIANG, Zengfu WANG, Hua LAN, Ting YONG, Quan PAN. Distributed MIMO sky-wave over-the-horizon-radar simulation system [J]. Systems Engineering and Electronics, 2023, 45(7): 1981-1989. |
[5] | Hongfei LIAN, Jiamin LONG, Xueyao HU, Yanwen JIANG, Dongsheng LI, Hongqi FAN. Multi domain joint modulation waveform for automotive radar [J]. Systems Engineering and Electronics, 2023, 45(11): 3402-3410. |
[6] | Chao HUANG, Zhongrui HUANG, Qingsong ZHOU, Jianyun ZHANG. Transmit waveform design for MIMO radar communication system based on optimal constellation [J]. Systems Engineering and Electronics, 2023, 45(10): 3016-3023. |
[7] | Yan LYU, Fei CAO, Jianfeng XU, Xiaowei FENG. Robust beamforming algorithm for monostatic MIMO radar based on FRFT [J]. Systems Engineering and Electronics, 2023, 45(1): 79-85. |
[8] | Yuzhuo WANG, Shengqi ZHU, Ximin LI, Lan LAN. Range ambiguous clutter suppression for FDA MIMO bistatic radar with main lobe correction [J]. Systems Engineering and Electronics, 2022, 44(5): 1483-1494. |
[9] | Sheng CHEN, Yongbo ZHAO, Xiaojiao PANG, Yili HU, Chenghu CAO. Beam space refined maximum likelihood algorithm for VHF MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(5): 1520-1526. |
[10] | Yongzhi YU, Chunhong ZHANG, Hai HAO. Downlink energy efficiency optimization for massive MIMO systems with imperfect CSI [J]. Systems Engineering and Electronics, 2022, 44(5): 1694-1700. |
[11] | Xiaotong ZHAO, Jianjiang ZHOU. Improved MUSIC algorithm for MIMO radar with low intercept [J]. Systems Engineering and Electronics, 2022, 44(2): 490-497. |
[12] | Junkui TANG, Zheng LIU, Rong XIE, Bo ZENG. Optimal design method for sparse array of MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3661-3666. |
[13] | Zhiyuan YOU, Guoping HU, Hao ZHOU. Bistatic nested MIMO radar based on redundant element optimization joint estimation method of target DOD and DOA [J]. Systems Engineering and Electronics, 2022, 44(12): 3696-3702. |
[14] | Yaohua XU, Chenglong ZHU, Yi WANG, Fang JANG, Mengqin DING, Huiping WANG. Neural network-based algorithm for high-parallelism massive MIMO signal detection [J]. Systems Engineering and Electronics, 2022, 44(12): 3843-3849. |
[15] | Yibin LIU, Chunyang WANG, Jian GONG, Ming TAN. Low-complexity and robust beamforming algorithm based on frequency diverse array MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(11): 3388-3396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||