Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (7): 1981-1989.doi: 10.12305/j.issn.1001-506X.2023.07.08
• Sensors and Signal Processing • Previous Articles Next Articles
Yuhang HAO1, Wei JIANG2, Zengfu WANG1,*, Hua LAN1, Ting YONG3, Quan PAN1
Received:
2022-03-31
Online:
2023-06-30
Published:
2023-07-11
Contact:
Zengfu WANG
CLC Number:
Yuhang HAO, Wei JIANG, Zengfu WANG, Hua LAN, Ting YONG, Quan PAN. Distributed MIMO sky-wave over-the-horizon-radar simulation system[J]. Systems Engineering and Electronics, 2023, 45(7): 1981-1989.
Table 2
Sites parameters"
测试组 | 站点 | 站点位置(经度/纬度)/(°) | 测试组 | 站点 | 站点位置(经度, 纬度)/(°) | |
A | 发射站-1 | (109.49, 19.82) | C | 发射站-1 | (102.64, 25.10) | |
接收站-1 | (110.41, 19.11) | 接收站-1 | (110.41, 19.11) | |||
B | 发射站-1 | (109.49, 19.82) | D | 发射站-1 | (109.49, 19.82) | |
发射站-2 | (108.78, 19.36) | 发射站-2 | (102.64, 25.10) | |||
接收站-1 | (110.41, 19.11) | 接收站-1 | (110.38, 19.21) | |||
接收站-2 | (110.07, 18.59) | 接收站-2 | (109.83, 18.53) |
Table 3
Statistical table of performance indexes"
指标 | 统计量 | 配置A | 配置B | 配置C | 配置D |
信噪比/dB | 最小值 | 9.07 | 11.16 | 8.69 | 11.94 |
最大值 | 21.41 | 21.52 | 16.71 | 21.57 | |
平均值 | 16.50 | 17.45 | 13.80 | 17.13 | |
标准差 | 2.86 | 2.34 | 1.94 | 2.15 | |
发现概率 | 最小值 | 0.19 | 0.34 | 0.17 | 0.39 |
最大值 | 0.91 | 0.92 | 0.73 | 0.92 | |
平均值 | 0.69 | 0.75 | 0.53 | 0.74 | |
标准差 | 0.18 | 0.13 | 0.14 | 0.12 | |
系统可用度 | 最小值 | 0.01 | 0.01 | 0.01 | 0.01 |
最大值 | 0.91 | 0.92 | 0.73 | 0.92 | |
平均值 | 0.58 | 0.62 | 0.40 | 0.70 | |
标准差 | 0.30 | 0.30 | 0.26 | 0.19 | |
定位精度/km | 平均值 | 37.41 | 25.50 | 69.24 | 37.79 |
标准差 | 18.51 | 14.24 | 22.54 | 22.91 | |
有效覆盖率/% | - | 67.90 | 77.78 | 47.22 | 92.86 |
1 |
GUO Z , WANG Z F , HAO Y H , et al. An improved coordinate registration for over-the-horizon radar using reference sources[J]. Electronics, 2021, 10 (24): 3086.
doi: 10.3390/electronics10243086 |
2 |
GUO Z , WANG Z F , LAN H , et al. OTHR multitarget tracking with a GMRF model of ionospheric parameters[J]. Signal Processing, 2021, 182, 107940.
doi: 10.1016/j.sigpro.2020.107940 |
3 |
SADEGHI M , BEHNIA F , AMIRI R , et al. Target localization geometry gain in distributed MIMO radar[J]. IEEE Trans.on Signal Processing, 2021, 69, 1642- 1652.
doi: 10.1109/TSP.2021.3062197 |
4 | FRAZER G J , ABRAMOVICH Y I , JOHNSON B A . Multiple-input multiple-output over-the-horizon radar: experimental results[J]. IET Radar, Sonar & Navigation, 2009, 3 (4): 290- 303. |
5 | YU X , LU A A , GAO X , et al. HF skywave massive MIMO communication[J]. IEEE Trans.on Wireless Communications, 2021, 21 (4): 2769- 2785. |
6 |
FRAZER G J . Experimental results for MIMO methods applied in over-the-horizon radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32 (12): 52- 69.
doi: 10.1109/MAES.2017.170057 |
7 |
HAIMOVICH A M . MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25 (1): 116- 129.
doi: 10.1109/MSP.2008.4408448 |
8 | TOMEI S , MARTORELLA M , COLEMAN C J , et al. Propagation effects on high frequency skywave multiple-input-multiple-output radar[J]. IET Radar, Sonar & Navigation, 2015, 9 (9): 1303- 1313. |
9 |
GUO Y D , GONG J . Low observable group targets detection based on space-frequency cascaded adaptive processing for MIMO OTH radar[J]. Multidimensional Systems and Signal Processing, 2021, 32 (3): 1005- 1026.
doi: 10.1007/s11045-021-00767-y |
10 | YU W Q , CHEN J W , BAO Z . Multi-mode propagation mode loca-lisation and spread doppler clutter suppression method for multiple-input multiple-output over-the-horizon radar[J]. IET Radar, Sonar & Navigation, 2019, 13 (8): 1214- 1224. |
11 |
FISHLER E , HAIMOVICH A , BLUM R S , et al. Spatial diversity in radars-models and detection performance[J]. IEEE Trans.on Signal Processing, 2006, 54 (3): 823- 838.
doi: 10.1109/TSP.2005.862813 |
12 |
REN F Y , GAO H T , YANG L J . Distributed multistatic sky-wave over-the-horizon radar based on the doppler frequency for marine target positioning[J]. Electronics, 2021, 10 (12): 1472.
doi: 10.3390/electronics10121472 |
13 | KANG E W . Radar system analysis, design, and simulation[M]. Boston: Artech House, 2008. |
14 | 王得旺. 双基地MIMO雷达系统设计与仿真研究[D]. 兰州: 兰州大学, 2015. |
WANG D W. Research on bistatic MIMO radar system design and simulation[D]. Lanzhou: Lanzhou University, 2015. | |
15 | 杨守国, 李勇, 张昆辉, 等. MIMO雷达信号处理半实物仿真系统的设计与实现[J]. 现代雷达, 2017, 39 (4): 87- 91. |
YANG S G , LI Y , ZHANG K H , et al. Design and implementation of semi-physical simulation system for MIMO radar signal processing[J]. Modern Radar, 2017, 39 (4): 87- 91. | |
16 |
LIU G G , YANG W B , LI P , et al. MIMO radar parallel simulation system based on CPU/GPU architecture[J]. Sensors, 2022, 22 (1): 396.
doi: 10.3390/s22010396 |
17 | 卢琨, 王永诚, 陈志坚. OTHR数据处理仿真系统的设计与实现[J]. 现代雷达, 2006, 28 (5): 27- 29. |
LU K , WANG Y C , CHEN Z J . Design and implementation of data processing simulation system for skywave over-the-horizon radar[J]. Modern Radar, 2006, 28 (5): 27- 29. | |
18 | CUCCOLI F, FACHERIS L, GIULI D, et al. Over the horizon sky-wave radar: simulation tool for coordinate registration method based on sea-land transitions identification[C]//Proc. of the IEEE European Radar Conference, 2009: 208-211. |
19 | SAAVEDRA Z , ZIMMERMAN D , CABRERA M A , et al. Sky-wave over-the-horizon radar simulation tool[J]. IET Radar, Sonar & Navigation, 2020, 14 (11): 1773- 1777. |
20 | CERVERA M A , HARRIS T J , HOLDSWORTH D A , et al. Ionospheric effects on HF radio wave propagation[J]. Ionosphere Dynamics and Applications, 2021, 19, 439- 492. |
21 | 周文瑜, 焦培南. 超视距雷达技术[M]. 北京: 电子工业出版社, 2008. |
ZHOU W Y , JIAO P N . Over-the-horizon radar technology[M]. Beijing: Publishing House of Electronics Industry, 2008. | |
22 |
DYSON P L , BENNETT J A . A model of the vertical distribution of the electron concentration in the ionosphere and its application to oblique propagation studies[J]. Journal of Atmospheric and Terrestrial Physics, 1988, 50 (3): 251- 262.
doi: 10.1016/0021-9169(88)90074-8 |
23 |
CROFT T A , HOOGASIAN H . Exact ray calculations in a quasi-parabolic ionosphere with no magnetic field[J]. Radio Science, 1968, 3 (1): 69- 74.
doi: 10.1002/rds19683169 |
24 | LI J , STOICA P . MIMO radar signal processing[M]. New York: Wiley, 2009. |
25 | ZHAO C Y, KE W, WANG T T. Multi-target localization using distributed MIMO radar based on spatial sparsity[C]//Proc. of the IEEE International Conference on Artificial Intelligence and Computer Applications, 2021: 591-595. |
26 |
ZHANG S , AHMED A , ZHANG Y D , et al. Enhanced DOA estimation exploiting multi-frequency sparse array[J]. IEEE Trans.on Signal Processing, 2021, 69, 5935- 5946.
doi: 10.1109/TSP.2021.3122292 |
27 |
LI H , WANG F , ZENG C , et al. Signal detection in distributed MIMO radar with non-orthogonal waveforms and sync errors[J]. IEEE Trans.on Signal Processing, 2021, 69, 3671- 3684.
doi: 10.1109/TSP.2021.3087897 |
28 | SERAFINO G , MARESCA S , DI M L , et al. A photonics-assisted multi-band MIMO radar network for the port of the future[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27 (6): 1- 13. |
29 | PULFORD G W, LOGOTHETIS A, EVANS R. Integrated multipath track initiation for over-the-horizon radar: 3rd report to telecom australia[R]. Melbourne: CSSIP Report, 1995. |
30 | 鲁耀兵, 高红卫. 分布孔径雷达[M]. 北京: 国防工业出版社, 2017. |
LU Y B , GAO H W . Distributed aperture radar[M]. Beijing: National Defense Industry Press, 2017. | |
31 | RICHARDS M A . Fundamentals of radar signal processing[M]. New York: McGraw-Hill Education, 2014. |
32 | YANG Y C , ZHANG T X , YI W , et al. Deployment of multistatic radar system using multi-objective particle swarm optimisation[J]. IET Radar, Sonar & Navigation, 2018, 12 (5): 485- 493. |
[1] | Bo TANG, Jiaqi LU, Kunyi GUO, Congjun JIN, Xinqing SHENG. Feeding coefficient correction and anisotropy analysis for the near field effect of triad [J]. Systems Engineering and Electronics, 2023, 45(3): 647-653. |
[2] | Yuzhao MA, Kui LIU, Yanfeng ZHANG, Shuai FENG, Xinglong XIONG. Laser radar signal denoising algorithm based on CEEMD combined with improved wavelet threshold [J]. Systems Engineering and Electronics, 2023, 45(1): 93-100. |
[3] | Bo TANG, Naiwen LIU, Jing MA, Kunyi GUO, Xinqing SHENG. Analysis of the joint PDF of the simulation error in the radio frequency simulation system [J]. Systems Engineering and Electronics, 2022, 44(5): 1454-1460. |
[4] | Haojie ZHANG, Rongmin LIANG, Yudong ZHANG. Design of simulation system for UGVs based on human-in-the-loop [J]. Systems Engineering and Electronics, 2022, 44(2): 538-545. |
[5] | Jianxing LIU, Tianqi ZHANG, Haojun BAI, Shaopeng YE. Blind recognition algorithm of polar code based on information matrix estimation [J]. Systems Engineering and Electronics, 2022, 44(2): 668-676. |
[6] | Feng ZHU, Qianqian JIANG, Chuan LIN, Xiao YANG. Typical wideband EMI identification based on support vector machine [J]. Systems Engineering and Electronics, 2021, 43(9): 2400-2406. |
[7] | Cheng CHEN, Tao LIU, Xiaoji SONG, Yi SU, Guanghu JIN. Penetration imaging enhancement algorithm based on sparse-signal processing [J]. Systems Engineering and Electronics, 2021, 43(8): 2021-2027. |
[8] | Ling WANG, Hua PAN, Wei ZHAO. Low complexity 2D-DOA estimation algorithm in the presence of mutual coupling [J]. Systems Engineering and Electronics, 2021, 43(7): 1819-1823. |
[9] | Zhongtao LUO, Renming GUO, Yanmei ZHAN. Review of nonlinear transformation design for impulsive noise [J]. Systems Engineering and Electronics, 2021, 43(7): 1971-1980. |
[10] | Chunqi JIANG, Na'e ZHENG, Zong ZUO, Sheng WANG, Xiang CHEN. Antenna selection of distributed MIMO radar on target tracking with key target highlighted [J]. Systems Engineering and Electronics, 2021, 43(10): 2860-2868. |
[11] | FENG Xiaoyu, XIE Junwei, GE Jiaang, YUAN Junchao. Recursive least squares beamforming algorithm based on frequency diverse array [J]. Systems Engineering and Electronics, 2019, 41(7): 1468-1473. |
[12] | ZHU Xiaopan, CHEN Shi. Design and implementation of DDS based image quality processing enhancement simulation system#br# [J]. Systems Engineering and Electronics, 2018, 40(8): 1881-1888. |
[13] | WU Chenyang, WEI Zhonghao, ZHANG Bingchen, LU Xiaojun. Multi-channel SAR imaging method based on CAMP [J]. Systems Engineering and Electronics, 2018, 40(6): 1249-1254. |
[14] | YAN Fenggang, RONG Jiajia, LIU Shuai, SHEN Yi, JIN Ming. Joint cross covariance matrix based fast direction of arrival estimation [J]. Systems Engineering and Electronics, 2018, 40(4): 733-738. |
[15] | TANG Bo, SHENG Xinqing, JIN Congjun, ZHAO Xiaoyang. Coupling effects on the handware in loop radio frequency simulation system [J]. Systems Engineering and Electronics, 2018, 40(4): 927-933. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||