Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (12): 4057-4067.doi: 10.12305/j.issn.1001-506X.2025.12.07
• Sensors and Signal Processing • Previous Articles
Junxian CHEN, Longfei SHI, Jialei LIU, Jiazhi MA
Received:2024-07-23
Revised:2024-11-23
Online:2025-02-27
Published:2025-02-27
Contact:
Longfei SHI
CLC Number:
Junxian CHEN, Longfei SHI, Jialei LIU, Jiazhi MA. Clutter suppression method for airborne bistatic radar based on gridless sparse Bayesian learning[J]. Systems Engineering and Electronics, 2025, 47(12): 4057-4067.
| 1 |
HUANG W J, WANG T, LIU K. A data and model-driven clutter suppression method for airborne bistatic radar based on deep unfolding[J]. Remote Sensing, 2024, 16 (14): 2516.
doi: 10.3390/rs16142516 |
| 2 | 谢文冲, 王永良, 熊元燚. 机载雷达空时自适应处理[M]. 北京: 清华大学出版社, 2024. |
| XIE W C, WANG Y L, XIONG Y Y. Space-time adaptive processing for airborne radar[M]. Beijing: Tsinghua University Press, 2024. | |
| 3 | 杨艺琼, 吴建新, 梁毅. 机载双基雷达波束域杂波抑制方法[J]. 系统工程与电子技术, 2024, 46 (6): 1935- 1945. |
| YANG Y Q, WU J X, LIANG Y. Airborne bistatic radar beam domain clutter suppression method[J]. Systems Engineering and Electronics, 2024, 46 (6): 1935- 1945. | |
| 4 | DUAN K Q, CHEN H, XIE W C, et al. Deep learning for high-resolution estimation of clutter angle-Doppler spectrum in STAP[J]. IET Radar, Sonar & Navigation, 2022, 16(2): 193−207. |
| 5 | CUI N, XING K, YU Z J, et al. Tensor-based sparse recovery space-time adaptive processing for large size data clutter suppression in airborne radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022, 59 (2): 907- 922. |
| 6 | 李仲悦, 王彤. 基于稀疏贝叶斯学习的稳健STAP算法[J]. 系统工程与电子技术, 2023, 45 (10): 3032- 3040. |
| LI Z Y, WANG T. Sparse Bayesian learing based robust STAP algorithm[J]. Systems Engineering and Electronics, 2023, 45 (10): 3032- 3040. | |
| 7 |
LIU K, WANG T, WU J X, et al. On the efficient implementation of sparse Bayesian learning-based STAP algorithms[J]. Remote Sensing, 2022, 14 (16): 3931.
doi: 10.3390/rs14163931 |
| 8 |
CAO J X, WANG T, WANG D G. Beam-space post-Doppler reduced-dimension STAP based on sparse Bayesian learning[J]. Remote Sensing, 2024, 16 (2): 307.
doi: 10.3390/rs16020307 |
| 9 |
YUAN H D, XU H, DUAN K Q, et al. Sparse Bayesian learning-based space-time adaptive processing with off-grid self-calibration for airborne radar[J]. IEEE Access, 2018, 6, 47296- 47307.
doi: 10.1109/ACCESS.2018.2866497 |
| 10 |
LI Z Y, WANG T. ADMM-based low-complexity off-grid space-time adaptive processing methods[J]. IEEE Access, 2020, 8, 206646- 206658.
doi: 10.1109/ACCESS.2020.3037652 |
| 11 |
WANG J P, WANG J, ZUO L, et al. Airborne passive bistatic radar clutter suppression algorithm based on root off-grid sparse Bayesian learning[J]. Remote Sensing, 2022, 14 (16): 3963.
doi: 10.3390/rs14163963 |
| 12 |
LI M F, LI H. A novel fast iterative STAP method with a coprime sampling structure[J]. Sensors, 2024, 24 (12): 4007.
doi: 10.3390/s24124007 |
| 13 |
GAO Z Q, DENG W, HUANG P P, et al. Airborne radar space-time adaptive processing algorithm based on dictionary and clutter power spectrum correction[J]. Electronics, 2024, 13 (11): 2187.
doi: 10.3390/electronics13112187 |
| 14 |
LIU C, WANG T, LIU K, et al. A novel sparse bayesian space-time adaptive processing algorithm to mitigate off-grid effects[J]. Remote Sensing, 2022, 14 (16): 3906.
doi: 10.3390/rs14163906 |
| 15 |
DENG Y Q, PEI Z W, LI W G, et al. Clutter suppression algorithm with joint intrinsic clutter motion errors calibration and off-grid effects mitigation in airborne passive radars[J]. Applied Sciences, 2023, 13 (9): 5653.
doi: 10.3390/app13095653 |
| 16 |
ZHANG C X, ZHAO H L, CHEN W C, et al. Robust multiple-measurement sparsity-aware STAP with Bayesian variational autoencoder[J]. Remote Sensing, 2022, 14 (15): 3800.
doi: 10.3390/rs14153800 |
| 17 |
CANDE’S E J, FERNANDEZ G. Towards a mathematical theory of superp-resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67 (6): 906- 956.
doi: 10.1002/cpa.21455 |
| 18 |
FENG W K, GUO Y D, ZHANG Y S, et al. Airborne radar space time adaptive processing based on atomic norm minimization[J]. Signal Processing, 2018, 148, 31- 40.
doi: 10.1016/j.sigpro.2018.02.008 |
| 19 |
ZHANG T, HU Y S, LAI R. Gridless super-resolution sparse recovery for non-sidelooking STAP using reweighted atomic norm minimization[J]. Multidimensional Systems and Signal Processing, 2021, 32, 1259- 1276.
doi: 10.1007/s11045-021-00784-x |
| 20 | LI Z Y, WANG T, SU Y Y. A fast and gridless STAP algorithm based on mixed-norm minimisation and the alternating direction method of multipliers[J]. IET Radar, Sonar & Navigation, 2021, 15(10): 1340−1352. |
| 21 |
LI J, WU R, LU I T, et al. Bayesian linear regression with cauchy prior and its application in sparse mimo radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (6): 9576- 9597.
doi: 10.1109/TAES.2023.3321585 |
| 22 |
MA J T, ZHANG J C, YANG Z Y, et al. Off-grid doa estimation using sparse Bayesian learning for mimo radar under impulsive noise[J]. Sensors, 2022, 22 (16): 6268.
doi: 10.3390/s22166268 |
| 23 |
WANG D G, WANG T, CUI W C, et al. A clutter suppression algorithm via enhanced sparse Bayesian learning for airborne radar[J]. IEEE Sensors Journal, 2023, 23 (10): 10900- 10911.
doi: 10.1109/JSEN.2023.3263919 |
| 24 | 吕晓德, 杨璟茂, 岳琦, 等. 基于稀疏贝叶斯学习的机载双基雷达杂波抑制[J]. 电子与信息学报, 2018, 40 (11): 2651- 2658. |
| LV X D, YANG J M, YUE Q, et al. Airborne bistatic radar clutter suppression based on sparse Bayesian learning[J]. Journal of Electronics & Information Technology, 2018, 40 (11): 2651- 2658. | |
| 25 |
WANG D G, WANG T, CUI W C, et al. A novel gridless space-time adaptive processing method based cyclic minimization[J]. Digital Signal Processing, 2023, 140, 104142.
doi: 10.1016/j.dsp.2023.104142 |
| 26 |
STEFFENS C, PESAVENTO M, PFETSCH M E. A compact formulation for the l2,1 mixed-norm minimization problem[J]. IEEE Trans. on Signal Processing, 2018, 66 (6): 1483- 1497.
doi: 10.1109/TSP.2017.2788431 |
| 27 |
QIN L G, LI J, LUO Y C, et al. A deep iterative neural network for structured compressed sensing based on generalized pattern-coupled sparse Bayesian learning[J]. Digital Signal Processing, 2023, 132, 103789.
doi: 10.1016/j.dsp.2022.103789 |
| 28 |
GIRI R, RAO B. Type I and type II Bayesian methods for sparse signal recovery using scale mixtures[J]. IEEE Trans. on Signal Processing, 2016, 64 (13): 3418- 3428.
doi: 10.1109/TSP.2016.2546231 |
| 29 | 王安安, 谢文冲, 王永良. 基于稀疏恢复的双基地机载雷达杂波抑制方法[J]. 系统工程与电子技术, 2024, 46 (2): 517- 525. |
| WANG A A, XIE W C, WANG Y L. Bistatic airborne radar clutter suppression method based on sparse recovery[J]. Systems Engineering and Electronics, 2024, 46 (2): 517- 525. | |
| 30 | 王安安, 谢文冲, 陈威, 等. 双基地机载雷达杂波和主瓣压制干扰抑制方法[J]. 系统工程与电子技术, 2023, 45 (3): 699- 707. |
| WANG A A, XIE W C, CHEN W. Clutter and main-lobe suppression jamming suppression method for bistatic airborne radar[J]. Systems Engineering and Electronics, 2023, 45 (3): 699- 707. | |
| 31 |
WANG Y L, CHEN J W, BAO Z, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (1): 70- 81.
doi: 10.1109/TAES.2003.1188894 |
| 32 |
ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28 (1): 208- 216.
doi: 10.1109/7.135446 |
| [1] | Gang TAN, Shefeng YAN, Linlin MAO, Jirui YANG. Joint channel and impulsive noise estimation for underwater acoustic OFDM systems based on sparse Bayesian learning [J]. Systems Engineering and Electronics, 2025, 47(10): 3482-3491. |
| [2] | Yalong WANG, Jiaheng WANG, Jun LI, qin HE, Zishu HE. Direct data domain STAP method via joint-sparse characteristic of clutter and noise [J]. Systems Engineering and Electronics, 2024, 46(9): 2980-2987. |
| [3] | Yiqiong YANG, Jianxin WU, Yi LIANG. Airborne bistatic radar beam domain clutter suppression method [J]. Systems Engineering and Electronics, 2024, 46(6): 1935-1945. |
| [4] | Cheng LIU, Huake WANG, Yinghui QUAN, Guisheng LIAO. Non-uniform distance ambiguity clutter suppression method for airborne multi-carrier frequency control array [J]. Systems Engineering and Electronics, 2024, 46(2): 459-469. |
| [5] | Lei YANG, Weitian SUN, Xinyao MAO, Yabo XIA, Jinghe SANG. Bayesian enhancement algorithm for micro-Doppler feature of radar bird target [J]. Systems Engineering and Electronics, 2024, 46(2): 505-516. |
| [6] | An'an WANG, Wenchong XIE, Yongliang WANG. Bistatic airborne radar clutter suppression method based on sparse recovery [J]. Systems Engineering and Electronics, 2024, 46(2): 517-525. |
| [7] | Lutao LIU, Guoheng XU, Zhen WANG. Fast and high precision DOA estimation algorithm based on sparse recovery [J]. Systems Engineering and Electronics, 2024, 46(11): 3631-3638. |
| [8] | Ran LAI, Gang SUN, Wei ZHANG, Tao ZHANG. Space-time moving target parameter estimation algorithm based on non-convex relaxation of atomic norm [J]. Systems Engineering and Electronics, 2023, 45(9): 2761-2767. |
| [9] | Lei YANG, Yabo XIA, Xianhua LIAO, Xinyao MAO, Yuchen DOU, Huan YANG. Super-resolution ISAR imagery algorithm based on bi-sparsity Bayesian learning [J]. Systems Engineering and Electronics, 2023, 45(5): 1371-1379. |
| [10] | Zhongyue LI, Tong WANG. Sparse Bayesian learning-based robust STAP algorithm [J]. Systems Engineering and Electronics, 2023, 45(10): 3032-3040. |
| [11] | Anlin XU, Yu ZHANG, Feng ZHOU. High resolution ISAR imaging based on Beta process [J]. Systems Engineering and Electronics, 2022, 44(6): 1873-1879. |
| [12] | Hai LI, Weijie CHENG, Ruijie XIE. Wind speed estimation of low-altitude wind-shear based on homotopy sparse STAP [J]. Systems Engineering and Electronics, 2022, 44(4): 1174-1181. |
| [13] | Tao CHEN, Lin SHI, Mengyu SHEN. Gridless DOA estimation algorithm based on M-FIPM [J]. Systems Engineering and Electronics, 2022, 44(2): 427-433. |
| [14] | Xingjia YANG, Keqing DUAN, Xiang LI, Wei QI. Resolving range ambiguity for cooperative detection using UAV swarms [J]. Systems Engineering and Electronics, 2022, 44(2): 480-489. |
| [15] | Jun ZHANG, Xinyu ZHANG, Weidong JIANG, Yongxiang LIU, Xiang LI. Fast DOA estimation method using generalized approximate message passing [J]. Systems Engineering and Electronics, 2022, 44(10): 2995-3002. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||