Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 459-469.doi: 10.12305/j.issn.1001-506X.2024.02.10
• Sensors and Signal Processing • Previous Articles
Cheng LIU1, Huake WANG1,*, Yinghui QUAN1, Guisheng LIAO2
Received:
2022-04-26
Online:
2024-01-25
Published:
2024-02-06
Contact:
Huake WANG
CLC Number:
Cheng LIU, Huake WANG, Yinghui QUAN, Guisheng LIAO. Non-uniform distance ambiguity clutter suppression method for airborne multi-carrier frequency control array[J]. Systems Engineering and Electronics, 2024, 46(2): 459-469.
1 |
VOLESR.New approach to m. t. i. clutter locking[J].Proc. of the Institution of Electrical Engineers,1973,120(11):1383-1390.
doi: 10.1049/piee.1973.0277 |
2 | 廖桂生. 相控阵天线AEW雷达时-空二维自适应处理[D]. 西安: 西安电子科技大学, 1992. |
LIAO G S. Time-space two-dimensional adaptive processing of phased array antenna AEW radar[D]. Xi'an: Xidian University, 1992. | |
3 | 王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000. |
WANGY L,PENGY N.Space-time adaptive signal processing[M].Beijing:Tsinghua University Press,2000. | |
4 | 王彤,保铮,廖桂生.地面慢速目标检测的STAP方法[J].电子学报,2000,28(9):123-125, 30. |
WANGT,BAOZ,LIAOG S.STAP method for ground slow target detection[J].Electronic Journal,2000,28(9):123-125, 30. | |
5 | 刘聪锋,廖桂生.基于对角加载的STAP性能改善[J].电子与信息学报,2008,30(4):906-910. |
LIUC F,LIAOG S.Performance improvement of STAP based on diagonal loading[J].Journal of Electronics & Information Technology,2008,30(4):906-910. | |
6 |
KREYENKAMPO,KLEMMR.Doppler compensation in forward-looking STAP radar[J].IEE Proceedings of Radar, Sonar and Navigation,2001,148(5):253-258.
doi: 10.1049/ip-rsn:20010557 |
7 |
李明,廖桂生,曲毅,等.一种稳健的机载前视阵雷达杂波谱补偿方法[J].西安电子科技大学学报(自然科学版),2009,36(4):633-638.
doi: 10.3969/j.issn.1001-2400.2009.04.011 |
LIM,LIAOG S,QUY,et al.A robust clutter spectrum compensation method for airborne forward-looking array radar[J].Journal of Xi'an University of Electronic Science and Technology (Natural Science Edition),2009,36(4):633-638.
doi: 10.3969/j.issn.1001-2400.2009.04.011 |
|
8 |
郭艺夺,宫健.基于稀疏恢复的自适应角度多普勒补偿方法[J].雷达科学与技术,2020,18(5):517-523.
doi: 10.3969/j.issn.1672-2337.2020.05.009 |
GUOY D,GONGJ.Adaptive angle Doppler compensation method based on sparse recovery[J].Radar Science and Technology,2020,18(5):517-523.
doi: 10.3969/j.issn.1672-2337.2020.05.009 |
|
9 | JIA F D, HE Z S, QIAN J H, et al. Adaptive angle-Doppler compensation in airborne phased radar for planar array[C]//Proc. of the IEEE 13th International Conference on Signal Processing, 2016: 1585-1588. |
10 | FALLAH A, BAKHSHI H. Extension of adaptive angle-Doppler compensation (AADC) in STAP to increase homogeneity of data in airborne bistatic radar[C]// Proc. of the 6th International Symposium on Telecommunications, 2012: 367-372. |
11 | 刘锦辉,廖桂生,李明.机载前视阵雷达杂波谱空时分离插值方法[J].电子与信息学报,2011,33(9):2120-2124. |
LIUJ H,LIAOG S,LIM.Space-time separation interpolation method for clutter spectrum of airborne forward-looking array radar[J].Journal of Electronics and Information,2011,33(9):2120-2124. | |
12 | VARADARAJAN V, KROLIK J L. Space-time interpolation for adaptive arrays with limited training data[C]//Proc. of the International Conference on Acoustics, Speech and Signal Processing, 2003: 1-6. |
13 | 董烁烁. 机载阵列雷达杂波抑制方法研究[D]. 西安: 西安电子科技大学, 2014. |
DONG S S. Research on clutter suppression of airborne array radar[D]. Xi'an: Xidian University, 2014. | |
14 | XUJ W,LIAOG S,ZHANGY H,et al.An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J].IEEE Journal of Selected Topics in Signal Processing,2017,2,309-320. |
15 |
XUJ W,ZHUS Q,LIAOG S.Range ambiguous clutter suppression for airborne FDA-STAP radar[J].IEEE Journal of Selected Topics in Signal Processing,2015,9(8):1620-1631.
doi: 10.1109/JSTSP.2015.2465353 |
16 |
WANGY Z,ZHUS Q.Range ambiguous clutter suppression for FDA-MIMO forward looking airborne radar based on main lobe correction[J].IEEE Trans.on Vehicular Technology,2021,70,2032-2046.
doi: 10.1109/TVT.2021.3057436 |
17 |
WENC,TAOM L,PENGJ Y,et al.Clutter suppression for airborne FDA-MIMO radar using multi-waveform adaptive processing and auxiliary channel STAP[J].Signal Processing,2019,154,280-293.
doi: 10.1016/j.sigpro.2018.09.016 |
18 |
WENC,PENGJ Y,ZHOUY,et al.Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J].IEEE Sensors Journal,2018,18(10):4154-4166.
doi: 10.1109/JSEN.2018.2820905 |
19 | XUJ W,LIAOG S.Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J].IEEE Trans.on Geoscience and Remote Sensing,2016,54(9):5532-5564. |
20 | HEX P,LIAOG S,ZHUS Q,et al.Near-range clutter suppression with elevation element multifrequency subpulse coding array radar[J].IEEE Trans.on Geoscience and Remote Sensing,2022,60,1-15. |
21 | HEX P,LIAOG S,ZHUS Q,et al.Range ambiguous clutter suppression approach with elevation time diverse array[J].IEEE Trans.on Aerospace and Electronic Systems,2021,59(1):359-373. |
22 | FORSYTHE K W, BLISS D W. Waveform correlation and optimization issues for MIMO radar[C]//Proc. of the 39th Asilomar Conference on Signals, Systems and Computers, 2005: 1306-1310. |
23 |
WANGH K,LIAOG S,XUJ W,et al.Transmit beampa-ttern design for coherent FDA by piecewise LFM waveform[J].Signal Processing,2019,161,14-24.
doi: 10.1016/j.sigpro.2019.03.010 |
24 | WANGH K,LIAOG S,ZHANGY H,et al.Transmit beam- pattern synthesis for chirp space-time coding array by time delay design[J].Digital Signal Processing,2020,110(18):1051-2004. |
25 | WANGH K,QUANY H,LIAOG S,et al.Space-time coding technique for coherent frequency diverse array[J].IEEE Trans. on Signal Processing,2021,69,5994-6008. |
26 | GAOK D,WANGW Q,CHENH,et al.Transmit beamspace design for multi-carrier frequency diverse array sensor[J].IEEE Sensors Journal,2016,16(14):5709-5714. |
27 | CHENW,CHONGX W,WANGY.Range-dependent ambi-guous clutter suppression for airborne SSF-STAP radar[J].IEEE Trans.on Aerospace and Electronic Systems,2021,58(1):359-373. |
28 | ZHANGW,ANR X,HEN Y,et al.Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments[J].IEEE Trans.on Aerospace and Electronic Systems,2020,56(1):785-795. |
29 | ZHANGW,HANM H,HEZ S,et al.Data dependent reduced dimension STAP[J].Radar Sonar & Navigation Iet,2018,13(8):1287-1294. |
30 | BATTISTI N. Reduced dimension principal components for STAP[C]//Proc. of the IEEE National Radar Conference, 2013. |
31 | 张良,保铮,廖桂生.降维空时自适应处理研究[J].电子与信息学报,2001,23(3):261-267. |
ZHANGL,BAOZ,LIAOG S.Research on dimensionality reduction space-time adaptive processing[J].Journal of Electronics and Information,2001,23(3):261-267. | |
32 | CAOC H,ZHANGJ,MENGJ M,et al.Clutter suppression and target tracking by the low-rank representation for airborne maritime surveillance radar[J].IEEE Access,2020,8,160774-160789. |
33 | FENGW K,ZHANGY S,HEX Y.Clutter rank estimation for reduce-dimension space time adaptive processing mimo radar[J].IEEE Sensors Journal,2016,17(2):238-239. |
34 | YANG X P, LIU Y X, TENG L. Reduced-rank sub-CPI STAP with fast convergence measure of effectiveness in nonhomogeneous clutter[C]//Proc. of the Institution of Engineering and Technology Radar Conference, 2013: 1-5. |
[1] | Ran LAI, Gang SUN, Wei ZHANG, Tao ZHANG. Space-time moving target parameter estimation algorithm based on non-convex relaxation of atomic norm [J]. Systems Engineering and Electronics, 2023, 45(9): 2761-2767. |
[2] | Zhongyue LI, Tong WANG. Sparse Bayesian learning-based robust STAP algorithm [J]. Systems Engineering and Electronics, 2023, 45(10): 3032-3040. |
[3] | Jinling LIAO, Guisheng LIAO, Jingwei XU, Lan LAN. Analysis on the performance of resolving range ambiguity based on a coding scheme design for EPC-MIMO [J]. Systems Engineering and Electronics, 2022, 44(7): 2166-2174. |
[4] | Hai LI, Weijie CHENG, Ruijie XIE. Wind speed estimation of low-altitude wind-shear based on homotopy sparse STAP [J]. Systems Engineering and Electronics, 2022, 44(4): 1174-1181. |
[5] | Xingjia YANG, Keqing DUAN, Xiang LI, Wei QI. Resolving range ambiguity for cooperative detection using UAV swarms [J]. Systems Engineering and Electronics, 2022, 44(2): 480-489. |
[6] | Yuting BAO, Fei CAO, Kunpeng ZHANG, Bichao ZHAN, Junyi LI, Jianwei ZHAN. Range ambiguity suppression of the missile-borne SAR wide area imaging based on OFDM-LFM [J]. Systems Engineering and Electronics, 2021, 43(2): 369-375. |
[7] | Xiaozhou CHEN, Qingjun XING, Lidong ZHANG. Slow-time-frequency-modulation jamming method forSTAP airborne early-warning radar [J]. Systems Engineering and Electronics, 2021, 43(11): 3177-3184. |
[8] | Yanhui ZHAO, Jianlong TANG, Jiyang LI, Luhao BI. Analysis of time-delay aliasing transmission jamming method for reduced dimension STAP airborne radar [J]. Systems Engineering and Electronics, 2020, 42(8): 1718-1725. |
[9] | Mingming TIAN, Guisheng LIAO, Yunpeng LI, Shengqi ZHU. Clutter properties and suppression method of hypersonic platform radar [J]. Systems Engineering and Electronics, 2020, 42(2): 301-308. |
[10] | PANG Xiaojiao, ZHAO Yongbo, CAO Chenghu, XU Baoqing, CHEN Sheng. Space-time processing method with temporal adaptive FIR filters [J]. Systems Engineering and Electronics, 2019, 41(12): 2669-2674. |
[11] | CAO Chenghu, ZHAO Yongbo, PANG Xiaojiao, XU Baoqing, CHEN Sheng. Method based on Chinese remainder theorem for range estimation of the target [J]. Systems Engineering and Electronics, 2019, 41(12): 2717-2722. |
[12] | LI Zhihui, ZHANG Yongshun, GAO Qian, GUO Yiduo, WANG Qiang, LIU Yang. Off-grid STAP algorithm based on local search orthogonal matching pursuit [J]. Systems Engineering and Electronics, 2018, 40(6): 1221-1226. |
[13] | FENG Yang, LIAO Guisheng, XU Jingwei. Robust STAP method for supper-low-attitude target detection with airborne radar [J]. Systems Engineering and Electronics, 2017, 39(7): 1464-1470. |
[14] | XU Xue-fei, LIAO Gui-sheng, XU Jing-wei. Data domain compensation for STAP with maneuvering platform [J]. Systems Engineering and Electronics, 2016, 38(6): 1221-1227. |
[15] | GAO Zhi-qi, TAO Hai-hong, ZHAO Ji-chao. Robust spacetime adaptive processing based on S transform for airborne radar [J]. Systems Engineering and Electronics, 2016, 38(6): 1268-1275. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||