Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (11): 3708-3720.doi: 10.12305/j.issn.1001-506X.2025.11.19
• Systems Engineering • Previous Articles
Wenzhao YU1,2,3,4, Jingchao QIAO1,2, Zhe DU1,2,*(
), Zhukai XING5, Xinyuan WAN2
Received:2025-04-30
Online:2025-11-25
Published:2025-12-08
Contact:
Zhe DU
E-mail:duzhe@whut.edu.cn
CLC Number:
Wenzhao YU, Jingchao QIAO, Zhe DU, Zhukai XING, Xinyuan WAN. Multi-USV cooperative task planning based on clustering optimization algorithm[J]. Systems Engineering and Electronics, 2025, 47(11): 3708-3720.
Table 3
Setting of initial position of tasks"
| 任务 | 对应坐标/m | 任务 | 对应坐标/m | |
| T1 | (81,113) | T15 | (462,167) | |
| T2 | (136,55) | T16 | (260,263) | |
| T3 | (221,78) | T17 | (244,322) | |
| T4 | (290,54) | T18 | (263,321) | |
| T5 | (146,135) | T19 | (348,243) | |
| T6 | (172,204) | T20 | (467,261) | |
| T7 | (208,139) | T21 | (463,229) | |
| T8 | (242,157) | T22 | (427,264) | |
| T9 | (321,209) | T23 | (458,335) | |
| T10 | (146,351) | T24 | (203,430) | |
| T11 | (126,394) | T25 | (242,402) | |
| T12 | (413,78) | T26 | (360,364) | |
| T13 | (363,156) | T27 | (385,383) | |
| T14 | (395,184) | — | — |
Table 5
Comparison of task allocation sequences with and without search angle constraint"
| 无人艇 | 有/无搜索角约束 | 任务分配计划 | 转角值/rad |
| V1 | 无 | 1→4→8→9→19→20→21→28→27→14→13 | 10.355 |
| 有 | 1→4→8→9→19→21→28→27→14→13→20 | 7.427 | |
| V2 | 无 | 2→5→6→10→11→12→22→29→30 | 4.824 |
| 有 | 2→5→6→10→11→12→22→29→30 | 4.824 | |
| V3 | 无 | 3→7→15→16→17→18→24→23→25→26 | 9.849 |
| 有 | 3→7→15→16→17→18→24→23→26→25 | 9.176 |
| 1 | 孔维玮, 冯伟强, 诸葛文章, 等. 美军大中型水面无人艇发展现状及启示[J]. 指挥控制与仿真, 2022, 44 (5): 14- 18. |
| KONG W W, FENG W Q, ZHUGE W Z, et al. Development and enlightenment of large and medium-sized unmanned surface vehicles of the US navy[J]. Command Control and Simulation, 2022, 44 (5): 14- 18. | |
| 2 | 齐小刚, 李博, 范英盛, 等. 多约束下多无人机的任务规划研究综述[J]. 智能系统学报, 2020, 15 (2): 204- 217. |
| QI X G, LI B, FAN Y S, et al. A survey of mission planning on UAVs systems based on multiple constraints[J]. CAAI Transactions on Intelligent Systems, 2020, 15 (2): 204- 217. | |
| 3 | 毕文豪, 张梦琦, 高飞, 等. 无人机集群任务分配技术研究综述[J]. 系统工程与电子技术, 2024, 46 (3): 922- 934. |
| BI W H, ZHANG M Q, GAO F, et al. Review on UAV swarm task allocation technology[J]. Systems Engineering and Electronics, 2024, 46 (3): 922- 934. | |
| 4 |
ZHUANG J Y, LONG L Y, ZHANG L, et al. Research on task allocation for multi-type task of unmanned surface vehicles[J]. Ocean Engineering, 2024, 308, 118321.
doi: 10.1016/j.oceaneng.2024.118321 |
| 5 |
BI W H, ZHANG M Q, CHEN H, et al. Cooperative task allocation method for air-sea heterogeneous unmanned system with an application to ocean environment information monitoring[J]. Ocean Engineering, 2024, 309, 118496.
doi: 10.1016/j.oceaneng.2024.118496 |
| 6 | ZHANG Y N, TIAN X, LI Y N, et al. Ant colony algorithm based unmanned surface vehicles task allocation design and implementation[C]//Proc.of the IEEE 4th International Conference on Computer Engineering and Intelligent Control, 2023: 274−277. |
| 7 | YI N, XU J J, YAN L M, et al. Task optimization and scheduling of distributed cyber-physical system based on improved ant colony algorithm[J]. Future Generation Computer Systems, 2020, 109 (1): 134- 148. |
| 8 | LIU Y, WU X, GUO Y K, et al. The multiple unmanned surface vehicles cooperative defense based on PM-PSO and GA-PSO in the sophisticated sea environment[C]//Proc. of the International Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques, 2018: 801−809. |
| 9 |
ZHANG J, REN J, CUI Y N, et al. Multi-USV task planning method based on improved deep reinforcement learning[J]. IEEE Internet of Things Journal, 2024, 11 (10): 18549- 18567.
doi: 10.1109/JIOT.2024.3363044 |
| 10 | TANG Y N, DOU L Q, ZHANG X Y, et al. Improved CNP-based task allocation for large-scale UAVs with timing constraints[J]. Journal of Aerospace Engineering, 2025, 38 (4): 4025029. |
| 11 |
DU B, LU Y, CHENG X T, et al. The object-oriented dynamic task assignment for unmanned surface vessels[J]. Engineering Applications of Artificial Intelligence, 2021, 106, 104476.
doi: 10.1016/j.engappai.2021.104476 |
| 12 |
MIYOMBO M E, LIU Y, MULENGA C M, et al. Optimal path planning in a real-world radioactive environment: a comparative study of A-star and Dijkstra algorithms[J]. Nuclear Engineering and Design, 2024, 420, 113039.
doi: 10.1016/j.nucengdes.2024.113039 |
| 13 |
SANG T T, XIAO J C, XIONG J F, et al. Path planning method of unmanned surface vehicles formation based on improved A* algorithm[J]. Journal of Marine Science and Engineering, 2023, 11 (1): 176.
doi: 10.3390/jmse11010176 |
| 14 |
ZHANG B, LU S L, LI Q, et al. Escape path planning for unmanned surface vehicle based on blind navigation rapidly exploring random tree* fusion algorithm[J]. Sensors, 2024, 24 (23): 7596.
doi: 10.3390/s24237596 |
| 15 |
ZHOU X J, TANG Z H, WANG N, et al. A novel state transition algorithm with adaptive fuzzy penalty for multi-constraint UAV path planning[J]. Expert Systems with Applications, 2024, 248, 123481.
doi: 10.1016/j.eswa.2024.123481 |
| 16 | LIANG X Y, JIANG P, ZHU H. Path planning for unmanned surface vehicle with dubins curve based on GA[C]//Proc. of the IEEE Chinese Automation Congress, 2020: 5149−5154. |
| 17 |
CHEN Y L, BAI G Q, ZHAN Y, et al. Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning[J]. IEEE Access, 2021, 9, 40728- 40742.
doi: 10.1109/ACCESS.2021.3062375 |
| 18 | ZHAI H R, WANG W H, ZHANG W, et al. Path planning algorithms for USVs via deep reinforcement learning[C]//Proc. of the IEEE China Automation Congress, 2021: 4281−4286. |
| 19 | LI X W, SONG H S, HAN Z J, et al. An improved artificial potential field algorithm with swerving force for USV path planning[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2021: 1019−1024. |
| 20 | 徐小强, 王明勇, 冒燕. 基于改进人工势场法的移动机器人路径规划[J]. 计算机应用, 2020, 40 (12): 3508- 3512. |
| XU X Q, WANG M Y, MAO Y. Path planning of mobile robot based on improved artificial potential field method[J]. Journal of Computer Applications, 2020, 40 (12): 3508- 3512. | |
| 21 | ZHANG L Y, HAN Y, JIANG B. Research on path planning method of unmanned boat based on improved artificial potential field method[C]//Proc. of the IEEE 6th Asian Conference on Artificial Intelligence Technology, 2022. |
| 22 | 时维国, 宁宁, 宋存利, 等. 基于蚁群算法与人工势场法的移动机器人路径规划[J]. 农业机械学报, 2023, 54 (12): 407- 416. |
| SHI W G, NING N, SONG C L, et al. Path planning of mobile robots based on ant colony algorithm and artificial potential field algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (12): 407- 416. | |
| 23 |
韩尧, 李少华. 基于改进人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2021, 43 (11): 3305- 3311.
doi: 10.12305/j.issn.1001-506X.2021.11.31 |
|
HAN Y, LI S H. UAV path planning based on improved artificial potential field[J]. Systems Engineering and Electronics, 2021, 43 (11): 3305- 3311.
doi: 10.12305/j.issn.1001-506X.2021.11.31 |
|
| 24 | WANG D, CHEN H M, WU C C. A path planning and obstacle avoidance method for USV based on dynamic-target APF algorithm in edge[C]//Proc. of the International Conference on Algorithms and Architectures for Parallel Processing, 2023: 21−39. |
| 25 | 王庆禄, 吴冯国, 郑成辰, 等. 基于优化人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2023, 45 (5): 1461- 1468. |
| WANG Q L, WU F G, ZHENG C C, et al. UAV path planning based on optimized artificial potential field method[J]. Systems Engineering and Electronics, 2023, 45 (5): 1461- 1468. | |
| 26 | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proc. of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996: 226−231. |
| 27 | 苏菲, 陈岩, 沈林成. 基于蚁群算法的无人机协同多任务分配[J]. 航空学报, 2008, (S1): 184- 191. |
| SU F, CHEN Y, SHEN L C. UAV cooperative multi-task assignment based on ant colony algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2008, (S1): 184- 191. | |
| 28 | 宋佳瑞. 基于人工势场法的机器人避障问题研究[D]. 沈阳: 沈阳工业大学, 2017. |
| SONG J R. Obstacle avoidance problem study of robot based on artificial potential field method[D]. Shenyang: Shenyang University of Technology, 2017. | |
| 29 | 谢朔. 基于多新息辨识理论的USV运动模型参数辨识[D]. 武汉: 武汉理工大学, 2017. |
| XIE S. Motion model parameters identification of USV based on multi-innovation theory[D]. Wuhan: Wuhan University of Technology, 2017. | |
| 30 | 贾胜伟. 基于运动模型的水面无人艇路径规划[D]. 大连: 大连理工大学, 2022. |
| JIA S W. Path planning of unmanned surface vehicle based on motion model[D]. Dalian: Dalian University of Technology, 2022. |
| [1] | Zhao YANG, Jinbiao HU, Yan WANG, Hongbiao QI. UAV coverage path planning for mountain patrol considering different takeoff and landing nests [J]. Systems Engineering and Electronics, 2025, 47(8): 2622-2631. |
| [2] | Xiaozhen YAN, Xinyue ZHOU, Qinghua LUO. Improved A-star algorithm for dynamic path planning of unmanned ships [J]. Systems Engineering and Electronics, 2025, 47(7): 2314-2328. |
| [3] | Junchao TANG, Chunhe HU. Complete coverage path planning for UAVs in 3D terrain and wind field environment [J]. Systems Engineering and Electronics, 2025, 47(7): 2349-2356. |
| [4] | Yijie LIU, Bin JIANG, Yajie MA, Wenbo LI, Chengrui LIU. Collision avoidance path planning and re-planning for USV formation [J]. Systems Engineering and Electronics, 2025, 47(6): 1964-1974. |
| [5] | Wei CHEN, Congqing WANG, Qiang ZENG, Zhan LI. UAV coverage path planning for aircraft surface visual inspection [J]. Systems Engineering and Electronics, 2025, 47(4): 1206-1213. |
| [6] | Ze GENG, Yanyan HUANG, Han ZHANG. UAV swarm anti-artillery search path planning based on artillery transfer path prediction [J]. Systems Engineering and Electronics, 2025, 47(4): 1222-1234. |
| [7] | Yuqi XIA, Yanyan HUANG, Qia CHEN. Path planning for unmanned vehicle reconnaissance based on deep Q-network [J]. Systems Engineering and Electronics, 2024, 46(9): 3070-3081. |
| [8] | Bowen FEI, Weidong BAO, Daqian LIU, Xiaomin ZHU. Air-ground cooperative autonomous task allocation method for dynamic target search and strike [J]. Systems Engineering and Electronics, 2024, 46(7): 2346-2358. |
| [9] | Jie LI, Yuejin TAN. Operation loop recommendation method based on integrated improved ant colony algorithm [J]. Systems Engineering and Electronics, 2024, 46(6): 2002-2012. |
| [10] | Jiawei SUN, Minghui YU, Dapeng YANG, Haoquan TANG, Dapeng BIAN. Path planning of carrier aircraft traction system based on CL-RRT and MPC [J]. Systems Engineering and Electronics, 2024, 46(5): 1745-1755. |
| [11] | Dong SUI, Zhenyu YANG, Songbin DING, Tingting ZHOU. Three-dimensional path planning of UAV based on EMSDBO algorithm [J]. Systems Engineering and Electronics, 2024, 46(5): 1756-1766. |
| [12] | Jing YU, Xiaojun WU, Anlin JIANG, Enmi YONG. Research on UAV path planning method based on the multi-precision planning windows [J]. Systems Engineering and Electronics, 2024, 46(5): 1767-1776. |
| [13] | Gang LIU, Zhibiao AN, Maojun ZHANG, Yu LIU, Wu LI. Subject objective path planning algorithm based on continuous road network environment [J]. Systems Engineering and Electronics, 2024, 46(4): 1346-1356. |
| [14] | Guixiang ZHAO, Jian ZHOU, Yunmiao LI, Chenxu WANG. Improved bi-directional rapidly-exploring random tree path planning for USV [J]. Systems Engineering and Electronics, 2024, 46(4): 1364-1371. |
| [15] | Ping YANG, Bing XIAO, Xin CHEN, Luqi TANG. 3D path planning problem for fighter aircraft with multiple constraints [J]. Systems Engineering and Electronics, 2024, 46(12): 4213-4221. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||