Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (9): 2960-2967.doi: 10.12305/j.issn.1001-506X.2024.09.08
• Sensors and Signal Processing • Previous Articles Next Articles
Kaixin ZHOU1,*, Danyang LIU2, Yongfeng ZHU1, Yongjie ZHANG3, Jianxiong ZHOU1
Received:
2023-03-07
Online:
2024-08-30
Published:
2024-09-12
Contact:
Kaixin ZHOU
CLC Number:
Kaixin ZHOU, Danyang LIU, Yongfeng ZHU, Yongjie ZHANG, Jianxiong ZHOU. Research on DBS technology of LFM-SF in strong clutter background[J]. Systems Engineering and Electronics, 2024, 46(9): 2960-2967.
1 | 吴学礼, 闫枫, 甄然, 等. 基于小波变换和K-SVD的探地雷达杂波抑制研究[J]. 河北科技大学学报, 2021, 42 (2): 111- 118. |
WU X L , YAN F , ZHEN R , et al. Research on adaptive clutter suppression for ground penetrating radar based on wavelet transform and K-SVD[J]. Journal of Hebei University of Science and Technology, 2021, 42 (2): 111- 118. | |
2 | WU D , ZHU D Y , SHEN M W , et al. Clutter suppression for wideband radar STAP[J]. IEEE Trans.on Geoscience & Remote Sensing, 2022, 60, 5103518. |
3 | 朱苇杭. 基于弹载SAR成像典型地面目标检测与识别方法研究[D]. 南京: 南京理工大学, 2019. |
ZHU W H. Research on typical ground target detection and re-cognition methods based on missile borne SAR imaging[D]. Nanjing: Nanjing University of Science and Technology, 2019. | |
4 |
ZHOU F , TIAN X D , WANG Y , et al. High-resolution ISAR imaging under low SNR with sparse stepped-frequency chirp signals[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (10): 8338- 8348.
doi: 10.1109/TGRS.2020.3045971 |
5 |
GUO J P , CHANG S Q , YANG F W , et al. Low-slow-small target detection using stepped-frequency signals in a strong folded clutter environment[J]. IET Radar, Sonar and Navigation, 2021, 15 (9): 1030- 1044.
doi: 10.1049/rsn2.12095 |
6 |
SEN Y , PASCAL A , FRANCESCO F , et al. A novel approach to unambiguous Doppler beam sharpening for forward-looking MIMO radar[J]. IEEE Sensors Journal, 2022, 22 (23): 23494- 23506.
doi: 10.1109/JSEN.2022.3215862 |
7 |
CHEN H M , LI M , ZHANG P , et al. Resolution enhancement for Doppler beam sharpening imaging[J]. IET Radar, Sonar and Navigation, 2015, 9 (7): 843- 851.
doi: 10.1049/iet-rsn.2014.0384 |
8 | 杨磊, 郭鹏程, 罗丁利. 调频步进信号目标抽取快速算法研究[J]. 火控雷达技术, 2019, 48 (2): 38- 42. |
YANG L , GUO P C , LUO D L . Research on a fast algorithm for extracting targets from FM stepped-frequency signals[J]. Fire Control Radar Technology, 2019, 48 (2): 38- 42. | |
9 |
刘开元, 周剑雄, 朱永锋, 等. 基于多散射中心对齐的距离像抽取方法[J]. 雷达科学与技术, 2013, 11 (5): 531- 536.
doi: 10.3969/j.issn.1672-2337.2013.05.015 |
LIU K Y , ZHOU J X , ZHU Y F , et al. Range profile stitching of moving target based on multiple scattering center alignment[J]. Radar Science and Technology, 2013, 11 (5): 531- 536.
doi: 10.3969/j.issn.1672-2337.2013.05.015 |
|
10 |
姜沛, 惠明, 张萌, 等. 一种改进的频域带宽合成方法[J]. 南阳师范学院学报, 2021, 20 (3): 40- 44.
doi: 10.3969/j.issn.1671-6132.2021.03.006 |
JIANG F , HUI M , ZHANG M , et al. An improved method of frequency domain bandwidth synthesis[J]. Journal of Nanyang Normal University, 2021, 20 (3): 40- 44.
doi: 10.3969/j.issn.1671-6132.2021.03.006 |
|
11 | 龙腾, 丁泽刚, 肖枫, 等. 星载高分辨频率步进SAR成像技术[J]. 雷达学报, 2019, 8 (6): 782- 792. |
LONG T , DING Z G , XIAO F , et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8 (6): 782- 792. | |
12 |
HU X W , TONG N N , ZHANG Y S , et al. Moving target's HRRP synthesis with sparse frequency-stepped chirp signal via atomic norm minimization[J]. IEEE Signal Processing Letters, 2016, 23 (9): 1212- 1215.
doi: 10.1109/LSP.2016.2593704 |
13 |
LIAO Z K , HU J M , LU D W , et al. Motion analysis and compensation method for random stepped frequency radar using the pseu-dorandom code[J]. IEEE Access, 2018, 6, 57643- 57654.
doi: 10.1109/ACCESS.2018.2873784 |
14 |
包云霞, 任丽香, 何佩琨, 等. 频率步进雷达距离互相关测速补偿算法[J]. 系统工程与电子技术, 2008, 30 (11): 2112- 2115.
doi: 10.3321/j.issn:1001-506X.2008.11.019 |
BAO Y X , REN L X , HE P K , et al. Velocity measurement and compensation method based on range profile cross-correlation in stepped-frequency radar[J]. Systems Engineering and Electronics, 2008, 30 (11): 2112- 2115.
doi: 10.3321/j.issn:1001-506X.2008.11.019 |
|
15 |
HU K B , ZHANG X L , SHI J , et al. A novel synthetic bandwidth method based on BP imaging for stepped-frequency SAR[J]. Remote Sensing Letters, 2016, 7 (8): 741- 750.
doi: 10.1080/2150704X.2016.1184351 |
16 |
LU X Y , SU W M , YANG J C , et al. A novel imaging method for random stepped frequency SAR with low SNR[J]. Remote Sensing Letters, 2017, 8 (12): 1190- 1199.
doi: 10.1080/2150704X.2017.1370564 |
17 | YIN C B, LAO G C, DA R. Virtual frequency diverse array model based step frequency SAR imaging[C]//Proc. of the 12th European Conference on Synthetic Aperture Radar, 2018. |
18 | WANG C , ZHANG Q Y , HU J M , et al. An efficient algorithm based on CSA for THz stepped-frequency SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4006505. |
19 | CHEN J, LONG T, ZENG T. A novel high-resolution stepped-frequency SAR signal processing method[C]//Proc. of the IET International Radar Conference, 2009. |
20 | 韩冰, 梁兴东, 李道京, 等. 高分辨率机载调频步进SAR成像处理[J]. 系统仿真学报, 2009, 21 (17): 5511- 5515. |
HAN B , LIANG X D , LI D J , et al. High resolution airborne stepped-frequency SAR imaging[J]. Journal of System Simulation, 2009, 21 (17): 5511- 5515. | |
21 | 王鹏宇, 宋千, 金添. 步进频率SAR快时间多普勒效应补偿新方法[J]. 电子与信息学报, 2009, 31 (9): 2053- 2058. |
WANG P Y , SONG Q , JIN T . A new fast-time Doppler effect compensation method applied to step frequency SAR system[J]. Journal of Electronics & Information Technology, 2009, 31 (9): 2053- 2058. | |
22 | 宋小圆. 弹载DBS技术与目标检测研究[D]. 西安: 西安电子科技大学, 2018. |
SONG X Y. Study on DBS imaging of missile borne and target detection[D]. Xi'an: Xidian University, 2018. | |
23 | 洪永彬, 张勇, 鲁振兴, 等. 一种高效的基于对比度的步进频雷达运动补偿算法[J]. 雷达学报, 2016, 5 (4): 378- 388. |
HONG Y B , ZHANG Y , LU Z X , et al. An efficient contrast-based motion compensation algorithm for stepped-frequency radar[J]. Journal of Radars, 2016, 5 (4): 378- 388. | |
24 | 陈曾平, 张炜承, 林钱强. 宽带雷达ISAR成像相位补偿新方法[J]. 雷达学报, 2013, 2 (1): 23- 29. |
CHEN Z P , ZHANG W C , LIN Q Q . A novel phase compensation method for ISAR imaging in wideband radar[J]. Journal of Radars, 2013, 2 (1): 23- 29. | |
25 |
LIU Y M , MENG H D , ZHANG H , et al. Motion compensation of moving targets for high range resolution stepped-frequency radar[J]. Sensors, 2008, 8 (5): 3429- 3437.
doi: 10.3390/s8053429 |
26 |
YANG T L , DONG Q , HUANG Q H . A novel echo-based error estimation and ripple elimination method for stepped frequency chirp SAR signal[J]. IEEE Access, 2019, 7, 182839- 182845.
doi: 10.1109/ACCESS.2019.2960260 |
27 | 李文吉, 任丽香, 张康, 等. 低信噪比条件下基于距离像互相关的相推测速方法[J]. 信号处理, 2021, 37 (7): 1125- 1132. |
LI W J , REN L X , ZHANG K , et al. A phase-derived velo-city measurement method based on range profiles cross correlation under low SNR[J]. Journal of Signal Processing, 2021, 37 (7): 1125- 1132. | |
28 |
WAHL D E , EICHEL P H , GHIGLIA D C , et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Trans.on Aerospace and Electronic Systems, 1994, 30 (3): 827- 835.
doi: 10.1109/7.303752 |
29 |
HOU X Z , MA Y H . SAR autofocus algorithm of iterative error compensation based on PGA[J]. Journal of Physics: Conference Series, 2022, 2414, 012019.
doi: 10.1088/1742-6596/2414/1/012019 |
30 |
DONG F , AN D X , HUANG X T , et al. A phase calibration method based on phase gradient autofocus for airborne holographic SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (12): 1864- 1868.
doi: 10.1109/LGRS.2019.2911932 |
31 | ZHANG T H, LI Y C, ZHANG T, et al. Expediting phase gradient autofocus algorithm for SAR imaging[C]//Proc. of the IEEE International Geoscience and Remote Sensing Sympo-sium, 2020. |
32 | 唐亮. 频率步进SAR/ISAR成像算法研究[D]. 长沙: 国防科学技术大学, 2014. |
TANG L. Research on stepped frequency SAR/ISAR imaging algorithm[D]. Changsha: National University of Defense Technology, 2014. |
[1] | Wei WU, Bing XUE, Dandan LIU. Target and sea clutter identification algorithm based on Tri-feature training [J]. Systems Engineering and Electronics, 2024, 46(9): 2935-2940. |
[2] | Weiping HUANG, Weihua WU, Yichao CAI. Method of covering the blind zone with multi-AEW cooperation based on absolute Doppler [J]. Systems Engineering and Electronics, 2024, 46(9): 2951-2959. |
[3] | Yalong WANG, Jiaheng WANG, Jun LI, qin HE, Zishu HE. Direct data domain STAP method via joint-sparse characteristic of clutter and noise [J]. Systems Engineering and Electronics, 2024, 46(9): 2980-2987. |
[4] | Mengyun AN, Jiapeng YIN, Jiankai HUANG, Yongzhen LI, Xuesong WANG. A method for signal reconstruction of polarization-Doppler weather radar based on spectral continuity [J]. Systems Engineering and Electronics, 2024, 46(7): 2285-2293. |
[5] | Yiqiong YANG, Jianxin WU, Yi LIANG. Airborne bistatic radar beam domain clutter suppression method [J]. Systems Engineering and Electronics, 2024, 46(6): 1935-1945. |
[6] | Jing LIAN, Yong YANG, Xiaoxia XIE, Xuesong WANG. Analysis of radar seeker sea-surface echoes at a high grazing angle [J]. Systems Engineering and Electronics, 2024, 46(5): 1535-1543. |
[7] | Cheng LIU, Huake WANG, Yinghui QUAN, Guisheng LIAO. Non-uniform distance ambiguity clutter suppression method for airborne multi-carrier frequency control array [J]. Systems Engineering and Electronics, 2024, 46(2): 459-469. |
[8] | An'an WANG, Wenchong XIE, Yongliang WANG. Bistatic airborne radar clutter suppression method based on sparse recovery [J]. Systems Engineering and Electronics, 2024, 46(2): 517-525. |
[9] | Yong YANG, Xuesong WANG. Analysis of radar detection performance for UAV based on clutter tail distribution [J]. Systems Engineering and Electronics, 2024, 46(1): 113-120. |
[10] | Xiao TAN, Zhiwei YANG, Pengyuan HE, Xiangyu WU. Analysis of clutter characteristics and parameters selection for following configuration of spaceborne bistatic radar [J]. Systems Engineering and Electronics, 2023, 45(9): 2735-2743. |
[11] | Ruixian HU, Zhao ZHANG, Cheng LUO. A baseline optimization method for distributive satellites system [J]. Systems Engineering and Electronics, 2023, 45(8): 2423-2437. |
[12] | Yuying PAN, Yunhua RAO, Yuhang CHEN, Feng CHENG. Wind turbine clutter suppression method based on reference signal correction for passive radar [J]. Systems Engineering and Electronics, 2023, 45(8): 2446-2454. |
[13] | Yali NIU, Jingwei XU, Guisheng LIAO, Qingyun KAN, Guangjun LIU. Clutter suppression approach for missile-borne HPRF radar with sum-difference antenna [J]. Systems Engineering and Electronics, 2023, 45(8): 2455-2462. |
[14] | Mengyu NI, Hui CHEN, Xiaoge WANG, Binbin LI, Zhaojian ZHANG. Analysis of baseline length and clutter characteristic of co-orbital transceiver spaceborne radar [J]. Systems Engineering and Electronics, 2023, 45(8): 2498-2505. |
[15] | Hanyi HUANG, Shiyou HU, Shenglong GUO, Shanjun LI, Qin SHU. Sea surface micro-moving target recognition based on sparse decomposition [J]. Systems Engineering and Electronics, 2023, 45(4): 1016-1023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||