Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1357-1363.doi: 10.12305/j.issn.1001-506X.2024.04.24
• Guidance, Navigation and Control • Previous Articles Next Articles
Yue LENG1,2,3,*, Sheng ZHONG1,2
Received:
2023-06-06
Online:
2024-03-25
Published:
2024-03-25
Contact:
Yue LENG
CLC Number:
Yue LENG, Sheng ZHONG. Compensation method for gravity disturbance in celestial/inertial integrated system[J]. Systems Engineering and Electronics, 2024, 46(4): 1357-1363.
1 |
LI C H , CHEN Z L , LIU X J , et al. Adaptively robust filtering algorithm for maritime celestial navigation[J]. Journal of Navigation, 2022, 75 (1): 200- 212.
doi: 10.1017/S0373463321000758 |
2 |
WU X J , WANG X L . A SINS/CNS deep integrated navigation method based on mathematical horizon reference[J]. Aircraft Engineering and Aerospace Technology, 2011, 83 (1): 26- 34.
doi: 10.1108/00022661111119892 |
3 | LIU X Q , ZHENG J M , LU J Z , et al. Reducing the effect of the accelerometer-slope bias error on the calibration error of a high-precision RLG INS system-level fitting method[J]. IEEE Trans.on Instrumentation and Measurement, 2021, 70 (1): 1- 9. |
4 |
LU J Z , LEI C H , YANG Y Q , et al. In-motion initial alignment and positioning with INS/CNS/ODO integrated navigation system for lunar rovers[J]. Advances in Space Research, 2017, 59 (12): 3070- 3079.
doi: 10.1016/j.asr.2017.03.011 |
5 |
WANG D J , LYU H F , WU J . A novel SINS/CNS integrated navigation method using model constraints for ballistic vehicle applications[J]. Journal of Navigation, 2017, 70 (6): 1415- 1437.
doi: 10.1017/S0373463317000418 |
6 | WANG Q Y , LI Y B , DIAO M , et al. Performance enhancement of INS/CNS integration navigation system based on particle swarm optimization back propagation neural network[J]. Ocean Engineering, 2015, 108 (1): 33- 45. |
7 |
WANG Q Y , CUI X F , LI Y B , et al. Performance enhancement of a USV INS/CNS/DVL integration navigation system based on an adaptive information sharing factor federated filter[J]. Sensors, 2017, 17 (2): 239- 249.
doi: 10.3390/s17020239 |
8 |
GOU B , CHENG Y M . INS/CNS integrated navigation based on corrected infrared earth measurement[J]. IEEE Trans.on Instrumentation and Measurement, 2019, 68 (9): 3358- 3366.
doi: 10.1109/TIM.2018.2872447 |
9 |
YAN F , ZHAO W Y , WANG X L , et al. Research on master-slave filtering of celestial navigation system/inertial navigation system[J]. Journal of Physics Conference Series, 2021, 1732, 012189.
doi: 10.1088/1742-6596/1732/1/012189 |
10 |
SIOURIS G M . Gravity modeling in aerospace applications[J]. Aerospace Science and Technology, 2009, 13 (6): 301- 315.
doi: 10.1016/j.ast.2009.05.005 |
11 |
JEKELI C , LEE J K , KWON J H . Modeling errors in upward continuation for INS gravity compensation[J]. Journal of Geodesy, 2007, 81 (5): 297- 309.
doi: 10.1007/s00190-006-0108-y |
12 |
WANG J , YANG G L , LI J , et al. An online gravity modeling method applied for high precision free-INS[J]. Sensors, 2016, 16 (10): 1541- 1560.
doi: 10.3390/s16101541 |
13 | TIE J B , CAO J L , WU M P , et al. Compensation of horizontal gravity disturbances for high precision inertial navigation[J]. Sensors, 2018, 18 (12): 906- 927. |
14 |
CHANG L B , QIN F J , WU M P . Gravity disturbance compensation for inertial navigation system[J]. IEEE Trans.on Instrumentation, 2019, 68 (10): 3751- 3765.
doi: 10.1109/TIM.2018.2879145 |
15 |
ZHU Z S , GUO Y Y , YE W , et al. A real-time gravity compensation method for a high-precision airborne position and orientation system based on a gravity map[J]. Journal of Navigation, 2018, 71 (3): 711- 728.
doi: 10.1017/S0373463317000790 |
16 | 翁海娜, 李鹏飞, 高峰, 等. 高精度惯导系统重力扰动的阻尼抑制方法[J]. 中国惯性技术学报, 2017, 25 (2): 141- 145. |
WENG H N , LI P F , GAO F , et al. Damping suppression method for gravity disturbance of high-precision inertial navigation system[J]. Journal of Chinese Inertial Technology, 2017, 25 (2): 141- 145. | |
17 | 郝诗文, 张志利, 周召发, 等. 重力扰动对惯性导航系统初始对准的影响[J]. 系统工程与电子技术, 2020, 42 (7): 1575- 1581. |
HAO S W , ZHANG Z L , ZHOU Z F , et al. Influence of gravity disturbance on initial alignment of inertial navigation system[J]. Systems Engineering and Electronics, 2020, 42 (7): 1575- 1581. | |
18 | 卢鑫, 练军想, 吴美平. 高精度舰载惯性导航系统的重力影响研究[J]. 导航与控制, 2010, 9 (4): 15- 21. |
LU X , LIAN J X , WU M P . Research of gravity error compensation in marine inertial navigation system[J]. Navigation and Control, 2010, 9 (4): 15- 21. | |
19 |
DON K . A study of the EGM2008 model of earth's gravitational field[J]. Journal of Navigation, 2022, 75 (5): 1017- 1034.
doi: 10.1017/S0373463322000480 |
20 |
WU R N , WU Q P , HAN F T , et al. Gravity compensation using EGM2008 for high-precision long-term inertial navigation systems[J]. Sensors, 2016, 16 (12): 2177- 2180.
doi: 10.3390/s16122177 |
21 | PESHEKHONOV V G . Problem of the vertical deflection in high-precision inertial navigation[J]. Gyroscopy and Navigation, 2021, 11 (4): 255- 262. |
22 | PAVLIS N K , HOLMES S A , KENYON S C , et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 24 (4): 117- 124. |
23 | WENG J , LIU J N , JIAO M X , et al. Analysis and on-line compensation of gravity disturbance in a high-precision inertial navigation system[J]. GPS Solutions, 2020, 24 (8): 26- 30. |
24 |
FANG J C , CHEN L Z T , YAO J F . An accurate gravity compensation method for high-precision airborne POS[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (8): 4564- 4573.
doi: 10.1109/TGRS.2013.2282423 |
25 |
HAO S W , ZHOU Z F , ZHANG Z L , et al. Analysis of gravity disturbance compensation for initial alignment of INS[J]. IEEE Access, 2020, 8, 137812- 137824.
doi: 10.1109/ACCESS.2020.3012450 |
26 | WANG J , YANG G L , LI X Y , et al. Application of the spherical harmonic gravity model in high precision inertial navigation systems[J]. Measurement Science and Technology, 2016, 27 (9): 95- 103. |
27 | 李倩, 王德昭, 吉宇人, 等. 重力扰动对极区下高精度惯导系统的影响分析及补偿[J]. 中国惯性技术学报, 2022, 30 (4): 429-436, 444. |
LI Q , WANG D Z , JI Y R , et al. Gravity disturbance influence analysis and compensation on high-precision INS in polar region[J]. Journal of Chinese Inertial Technology, 2022, 30 (4): 429-436, 444. | |
28 |
ZHU Z S , TAN H , JIA Y , et al. Research on the gravity disturbance compensation terminal for high-precision position and orientation system[J]. Sensors, 2020, 20 (17): 4932- 4940.
doi: 10.3390/s20174932 |
29 |
WANG R , XIONG Z , LIU J Y , et al. A new tightly-coupled INS/CNS integrated navigation algorithm with weighted multi-stars observations[[J]. Proc.of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230 (4): 698- 712.
doi: 10.1177/0954410015596010 |
30 | 程风, 李海霞, 常乐, 等. CNS+GNSS+INS船载高精度实时定位定姿算法改进研究[J]. 测绘通报, 2019, (5): 30- 34. |
CHEN G F , LI H X , CHANG L , et al. Research on improvement of CNS+GNSS+INS ship-borne high precision real-time positioning and attitude determination algorithms[J]. Bulletin of Surveying and Mapping, 2019, (5): 30- 34. | |
31 | 秦永元. 惯性导航[M]. 2版 北京: 科学出版社, 2014. |
QIN Y Y . Inertial navigation[M]. 2nd ed Beijing: Press of Science, 2014. | |
32 | GROVES P D . Principles of GNSS, inertial, and multi-sensor integrated navigation systems[M]. 2nd ed London: Artech House, 2013. |
33 | GAO P Y , LI K , WANG L , et al. A self-calibration method for accelerometer nonlinearity errors in triaxis rotational inertial navigation system[J]. IEEE Trans.on Instrumentation and Measurement, 2016, 66 (2): 243- 253. |
[1] | Hongjin ZHOU, Hui SONG, Wenliang FAN, Su WANG, Dongliang GU. Ship inertial navigation system position correction method based on Bayesian neural network [J]. Systems Engineering and Electronics, 2024, 46(4): 1393-1400. |
[2] | Geng XU, Yongxu HE, Yonggang ZHANG. Inertial-frame-based transfer alignment using Rodriguez parameters [J]. Systems Engineering and Electronics, 2022, 44(9): 2903-2913. |
[3] | Yang LI, Meng LIU, Jing GONG, Yongzhao WANG, Fujian DENG. Double-velocity inertial-frame alignment algorithm with pseudo INS modeling in polar regions [J]. Systems Engineering and Electronics, 2022, 44(5): 1677-1684. |
[4] | Shiwen HAO, Zhili ZHANG, Zhaofa ZHOU, Zhenjun CHANG, Xianyi LIU. Influence of gravity disturbance on initial alignment of inertial navigation system [J]. Systems Engineering and Electronics, 2020, 42(7): 1575-1581. |
[5] | Jun WENG, Xiaoyun BIAN. Effect analysis and compensation of the high precision ring laser gyroscope inertial navigation system ZUPT caused by gravity disturbance [J]. Systems Engineering and Electronics, 2020, 42(1): 179-183. |
[6] | JIANG Xiuhong, DUAN Fuhai, HU Ailing. Predictive maintenance for multistate system based on maintenance importance [J]. Systems Engineering and Electronics, 2018, 40(4): 839-844. |
[7] | FANG Min, CHENG Ziyang, HE Zishu, LI Jun. Multi-target paring algorithm for distributed radar with INS error [J]. Systems Engineering and Electronics, 2018, 40(2): 308-313. |
[8] | XIA Weixing, YANG Xiaodong. ESO estimation algorithm for gyro drift of INS [J]. Systems Engineering and Electronics, 2018, 40(12): 2804-2809. |
[9] | WANG Wei, GUO Huijie, MENG Yue. Satellite/pseudolite/INS integrated navigation algorithm [J]. Systems Engineering and Electronics, 2017, 39(2): 391-397. |
[10] | LI Ye1, GUO Jianguo1, ZHAO Bin1, YOU YuHua2, LU Xiaodong1, ZHOU Jun1. Aircraft dynamicsaided MEMS inertial navigation system [J]. Systems Engineering and Electronics, 2016, 38(8): 1880-1885. |
[11] | DENG Zhi-hong, CAI Shan-bo, WANG Bo, FU Meng-yin. Compound rotation control algorithm for rotational INS [J]. Systems Engineering and Electronics, 2016, 38(11): 2610-2616. |
[12] | LIU Shuai, SUN Fu-ping, ZHANG Lun-dong. Research on the tight integration of ambiguity-fixed PPP and INS [J]. Systems Engineering and Electronics, 2016, 38(10): 2389-2394. |
[13] | CHENG Jian-hua, CHEN Dai-dai, WANG Bing-yu, WANG Tong-da. Approach of transfer alignment accuracy evaluation based on observability degree analysis [J]. Systems Engineering and Electronics, 2015, 37(4): 895-900. |
[14] | CONG Li, LI Er-cui, ZHANG Li-yang, QIN Hong-lei, XUE Rui. GPS/INS integrated navigation attitude determination method based on CLAMBDA and AFM aided by INS [J]. Systems Engineering and Electronics, 2015, 37(4): 882-887. |
[15] | KOU Kun-hu, ZHANG You-an, LIU Ai-li. Vision aided INS fast localization error modification method for cruise missiles [J]. Journal of Systems Engineering and Electronics, 2013, 35(2): 397-401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||