Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 668-674.doi: 10.12305/j.issn.1001-506X.2024.02.30
• Guidance, Navigation and Control • Previous Articles
Shiluo GUO1,2, Chunyu WANG2,*, Yang LI2, Peng TIAN3
Received:
2022-03-22
Online:
2024-01-25
Published:
2024-02-06
Contact:
Chunyu WANG
CLC Number:
Shiluo GUO, Chunyu WANG, Yang LI, Peng TIAN. Fault self-checking method of Kalman filter and its application for initial alignment of SINS[J]. Systems Engineering and Electronics, 2024, 46(2): 668-674.
1 |
HE H Y , XU J N , QIN F J , et al. Research on generalized inertial navigation system damping technology based on dual-model mean[J]. Proc.of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230 (8): 1518- 1527.
doi: 10.1177/0954410015613737 |
2 | ALI R M , PAKNOOSH K . Robust in-field estimation and calibration approach for strapdown inertial navigation systems acce-lerometers bias acting on the vertical channel[J]. IET Radar, Sonar & Navigation, 2021, 14 (3): 407- 414. |
3 |
ZHARKOV M , VEREMEENKO K , KUZNETSOV I , et al. Experimental results of attitude determination functional algorithms implementation in strapdown inertial navigation system[J]. Sensors, 2022, 22 (5): 1894.
doi: 10.3390/s22051894 |
4 | 严恭敏. 捷联惯导系统动基座初始对准及其他相关问题研究[R]. 西安: 西北工业大学, 2008. |
YAN G M. On SINS in-movement initial alignment and some other problems[R]. Xi'an: Northwestern Polytechnical University, 2008. | |
5 |
CHANG L B , QIN F J , XU J N . Strapdown inertial navigation system initial alignment based on group of double direct spatial isometries[J]. IEEE Sensors Journal, 2022, 22 (1): 803- 818.
doi: 10.1109/JSEN.2021.3108497 |
6 |
RAHIMI H , NIKKHAH A . Coarse alignment of marine strapdown inertial navigation system using the location of fitted parametric circle of gravity movement[J]. The Journal of Navigation, 2021, 74 (3): 574- 593.
doi: 10.1017/S0373463321000151 |
7 |
TSUKERMAN A , KLEIN I . Analytic evaluation of fine alignment for velocity aided INS[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (1): 376- 384.
doi: 10.1109/TAES.2017.2760520 |
8 |
BARANTSEV G O , GOLOVAN A A , KUZNETSOV P Y . Initial alignment method for a strapdown inertial navigation system on a swing base[J]. Moscow University Mechanics Bulletin, 2021, 76 (5): 136- 141.
doi: 10.3103/S0027133021050022 |
9 | WEI X K , LI J , FENG K Q , et al. An improved in-flight alignment method based on backtracking navigation for GPS-aided low-cost SINS with short endurance[J]. IEEE Robotics and Automation Letters, 2020, 7 (1): 634- 641. |
10 |
YAO Y Q , XU X S , YANG D R , et al. An IMM-UKF aided SINS/USBL calibration solution for underwater vehicles[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (4): 3740- 3747.
doi: 10.1109/TVT.2020.2972526 |
11 | CHEN F , YANG P X . Self-adaptive SINS/GNSS integrated arithmetic based on long-endurance aerial vehicle[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36 (3): 18- 21. |
12 |
GHANBARPOURASL H . A new robust quaternion-based initial alignment algorithm for stationary strapdown inertial navigation systems[J]. Proc.of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234 (12): 1913- 1925.
doi: 10.1177/0954410020920473 |
13 |
ZHU B , LI J S , CUI M , et al. Robust optimization-based alignment method based on projection statistics algorithm[J]. IEEE Sensors Journal, 2021, 21 (15): 16538- 16546.
doi: 10.1109/JSEN.2021.3081484 |
14 |
SILVA F O , HEMERLY E M , LEITE F , et al. On the mea-surement selection for stationary SINS alignment Kalman filters[J]. Measurement, 2018, 130, 82- 93.
doi: 10.1016/j.measurement.2018.08.004 |
15 |
CHANG G B . Kalman filter with both adaptivity and robustness[J]. Journal of Process Control, 2014, 24 (3): 81- 87.
doi: 10.1016/j.jprocont.2013.12.017 |
16 |
WEN Z Y , YANG G L , CAI Q Z , et al. Odometer aided SINS in-motion alignment method based on backtracking scheme for large misalignment angles[J]. IEEE Access, 2020, 8, 7937- 7948.
doi: 10.1109/ACCESS.2019.2962511 |
17 |
YU H , CHOI S W , LEE S J . Nonlinear filtering approaches to in-flight alignment of SDINS with large initial attitude error[J]. Journal of Institute of Control, Robotics and Systems, 2014, 20 (4): 468- 473.
doi: 10.5302/J.ICROS.2014.13.1884 |
18 |
赵仁杰, 李开龙, 胡柏青, 等. 基于改进四元数阻尼误差模型的SINS初始对准算法[J]. 系统工程与电子技术, 2021, 43 (11): 3330- 3337.
doi: 10.12305/j.issn.1001-506X.2021.11.34 |
ZHAO R J , LI K L , HU B Q , et al. SINS initial alignment algorithm based on improved quaternion damping error model[J]. Systems Engineering and Electronics, 2021, 43 (11): 3330- 3337.
doi: 10.12305/j.issn.1001-506X.2021.11.34 |
|
19 |
GUO S L , SUN Y J , CHANG L M , et al. Robust cubature Kalman filter method for nonlinear initial alignment of SINS[J]. Defence Technology, 2021, 17 (2): 593- 598.
doi: 10.1016/j.dt.2020.03.016 |
20 | 徐庚, 何永旭, 张勇刚. 基于罗德里格斯参数的惯性系传递对准算法[J]. 系统工程与电子技术, 2022, 44 (9): 2903- 2913. |
XU G , HE Y X , ZHANG Y G . Inertial-frame-based transfer alignment using Rodriguez parameters[J]. Systems Engineering and Electronics, 2022, 44 (9): 2903- 2913. | |
21 | XU J S , WANG Y J , LIU Y . Comparative study on UKF and CKF in large azimuth misalignment for SINS[J]. Electronics Optics & Control, 2017, 24 (9): 42- 46. |
22 | LU X Y , YANG L Q , GUO J , et al. Application of improved Sage-Husa adaptive filtering algorithm in MEMS AHRS[J]. Navigation and Control, 2019, 18 (2): 105- 112. |
23 |
MUNDLA N , ARUN D M , VITOR C G , et al. MEMS-based IMU drift minimization: Sage-Husa adaptive robust Kalman filtering[J]. IEEE Sensors Journal, 2020, 20 (1): 250- 260.
doi: 10.1109/JSEN.2019.2941273 |
24 | WANG D , XU X S , HOU L H . An improved adaptive Kalman filter for underwater SINS/DVL system[J]. Mathematical Problems in Engineering, 2020, 2020 (1): 5456961. |
25 | CAI Z P , ZHANG X Y , NIU C , et al. A simplified strong tracking cubature Kalman filtering algorithm[J]. Electronics Optics & Control, 2017, 24 (1): 6- 8. |
26 | 薛海建, 郭晓松, 周召发. 基于自适应多重渐消因子卡尔曼滤波的SINS初始对准方法[J]. 系统工程与电子技术, 2017, 39 (3): 620- 626. |
XUE H J , GUO X S , ZHOU Z F . SINS initial alignment method based on adaptive multiple fading factors Kalman filter[J]. Systems Engineering and Electronics, 2017, 39 (3): 620- 626. | |
27 | CHANG G B , LIU M . An adaptive fading Kalman filter based on Mahalanobis distance[J]. Proc.of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229 (6): 1114- 1123. |
28 | WANG J W , MA Z , CHEN X Y . Generalized dynamic fuzzy NN model based on multiple fading factors SCKF and its application in integrated navigation[J]. IEEE Sensors Journal, 2021, 21 (3): 3680- 3693. |
29 | 严恭敏, 邓瑀. 传统组合导航中的实用Kalman滤波技术评述[J]. 导航定位与授时, 2020, 7 (2): 50- 64. |
YAN G M , DENG Y . Review on practical Kalman filtering techniques in traditional integrated navigation system[J]. Navigation Position & Timing, 2020, 7 (2): 50- 64. | |
30 | GAO B B , HU G G , ZHONG Y M , et al. Cubature Kalman filter with both adaptability and robustness for tightly-coupled GNSS/INS integration[J]. IEEE Sensors Journal, 2021, 21 (13): 14997- 15011. |
31 | ZHU B , LI D , LI Z H , et al. Robust adaptive Kalman filter for strapdown inertial navigation system dynamic alignment[J]. IET Radar, Sonar & Navigation, 2021, 15 (12): 1583- 1593. |
[1] | Xibin WANG, Hongde DAI, Wenjie QUAN, Rui WANG, Linsheng JIA. Nonzero velocity interval attitude estimation CKF algorithm based on acceleration compensation for inertial pedestrian navigation [J]. Systems Engineering and Electronics, 2023, 45(9): 2894-2901. |
[2] | Feng ZHA, Qiushuo WEI, Hongyang HE, Bao LI. Biaxial rotation scheme based on diagonal rotation of IMU body [J]. Systems Engineering and Electronics, 2023, 45(8): 2546-2554. |
[3] | Hongde DAI, Yufeng MA, Shaowu DAI, Baidong ZHENG, Xiaoyu ZHANG. Zero velocity update algorithm for inertial pedestrian navigation based on nonlinear prediction of heading error [J]. Systems Engineering and Electronics, 2023, 45(8): 2555-2561. |
[4] | Haijian XUE, Tao WANG, Xinghui CAI, Jintao WANG, Ying JIANG. In-motion alignment method for vehicle carried SINS aided by odometer [J]. Systems Engineering and Electronics, 2023, 45(6): 1805-1813. |
[5] | Lican DAI, Xin LIU, Haiying ZHANG, Xiang DAI, Chenggang WANG. Flight target track prediction based on Kalman filter algorithm unfolding [J]. Systems Engineering and Electronics, 2023, 45(6): 1814-1820. |
[6] | Yikang HE, Wenhan ZHANG, Zhenhua WANG, Wen HE. Solar cell array rotation angle estimation method for satellite emergency recovery [J]. Systems Engineering and Electronics, 2023, 45(3): 797-805. |
[7] | Zihan SHEN, Xiubin ZHAO, Chuang ZHANG, Liang ZHANG, Xinxian LIU. Adaptive fault-tolerant method based on long-short term memory neural network [J]. Systems Engineering and Electronics, 2023, 45(3): 831-838. |
[8] | Kaidi JIN, Hongzhou CHAI, Chuhan SU, Minzhi XIANG, Ming LI. State transformation Kalman filter for DVL/SINS integral navigation system [J]. Systems Engineering and Electronics, 2023, 45(11): 3624-3631. |
[9] | Hongqiong TANG, Jiangning XU, Wence SHI, Hongyang HE, Fangneng LI. Davenport quaternion DVL calibration method based on position observation information [J]. Systems Engineering and Electronics, 2023, 45(11): 3640-3648. |
[10] | Tiangao ZHU, Yong LIU, Kailong LI, Renjie ZHAO. Analysis and comparison of Euler angles based-error model based on Lie groups of the strapdown inertial navigation system [J]. Systems Engineering and Electronics, 2023, 45(10): 3265-3273. |
[11] | Jing MU, Dongsheng YAN, Yuanli CAI, Changyuan WANG. Masreliez-Martin method based robust fractional cubature Kalman filtering algorithm and its applications [J]. Systems Engineering and Electronics, 2023, 45(1): 234-240. |
[12] | Geng XU, Yongxu HE, Yonggang ZHANG. Inertial-frame-based transfer alignment using Rodriguez parameters [J]. Systems Engineering and Electronics, 2022, 44(9): 2903-2913. |
[13] | Haoran SHI, Faxing LU, Jiangxin QI, Guang YANG. Cooperative target tracking of UAVs based on aided beacon [J]. Systems Engineering and Electronics, 2022, 44(7): 2302-2310. |
[14] | Guang ZHAI, Yanxin WANG, Yiyong SUN. Cooperative tracking filtering technology of multi-target based on low orbit satellite constellation [J]. Systems Engineering and Electronics, 2022, 44(6): 1957-1967. |
[15] | Yiping DONG, Ning LIU, Zhong SU, Jingxiao WANG, Hongyang BAI. Integrated navigation method of high-speed spinning flying bodybased on AEKF [J]. Systems Engineering and Electronics, 2022, 44(6): 1977-1983. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||