Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (2): 488-496.doi: 10.12305/j.issn.1001-506X.2024.02.13
• Sensors and Signal Processing • Previous Articles
Zhengwei LIU, Ying CHEN, Yaobing LU
Received:
2022-06-14
Online:
2024-01-25
Published:
2024-02-06
Contact:
Ying CHEN
CLC Number:
Zhengwei LIU, Ying CHEN, Yaobing LU. A study on high resolution radar tracking method for space target[J]. Systems Engineering and Electronics, 2024, 46(2): 488-496.
1 | 强晓敏. 高分辨雷达目标检测与跟踪[D]. 西安: 西安电子科技大学, 2018. |
QIANG X M. Targets detection and tracking in wideband radar[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2018. | |
2 | 李宝柱, 袁起, 何佩锟, 等. 一种利用宽带信号对弹道目标成像和跟踪的方法[J]. 系统工程与电子技术, 2009, 31 (7): 1588- 1591. |
LI B Z , YUAN Q , HE P K , et al. Method of imaging and tracking ballistic target using wideband signals[J]. Systems Engineering and Electronics, 2009, 31 (7): 1588- 1591. | |
3 | 靳俊峰, 曾怡, 廖圣龙. 弹道导弹群目标跟踪分裂算法研究[J]. 雷达科学与技术, 2020, 18 (3): 321- 326. |
JIN J F , ZENG Y , LIAO S L . Group target splitting algorithm for ballistic missile target tracking[J]. Radar Science and Technology, 2020, 18 (3): 321- 326. | |
4 | 张龙. 弹道导弹高阶容积Kalman滤波弹道跟踪方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
ZHANG L. Research of ballistic missile trajectory tracking with high-degree cubature Kalman filter[D]. Harbin: Harbin Institute of Technology, 2018. | |
5 |
WEI S P , ZHANG L , LIU H W . Integrated Kalman filter of accurate ranging and tracking with wideband radar[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 58 (12): 8395- 8411.
doi: 10.1109/TGRS.2020.2987854 |
6 | 郭跃, 刘新学, 王才红. 混合坐标系下跟踪自由段弹道导弹的IMM-UPF算法研究[J]. 弹道学报, 2015, 27 (1): 12-17, 23. |
GUO Y , LIU X X , WANG C H . A study on IMM-UPF of tracking ballistic missile at free-flight phase in mixed coordinate system[J]. Journal of Ballistics, 2015, 27 (1): 12-17, 23. | |
7 |
LI X R , JILKOV V P . A survey of maneuvering target tracking part Ⅲ: measurement models[J]. Proceedings of SPIE, 2001, 4473, 423- 446.
doi: 10.1117/12.492752 |
8 |
VALIPOUR M , RICARDEZ L A . Abridged Gaussian sum extended Kalman filter for nonlinear state estimation under non-Gaussian process uncertainties[J]. Computers and Chemical Engineering, 2021, 155, 107534.
doi: 10.1016/j.compchemeng.2021.107534 |
9 |
孙照强, 王志贵, 孟飞, 等. 基于EKF及弹道方程的弹道目标跟踪滤波器设计[J]. 系统工程与电子技术, 2022, 44 (10): 3207- 3212.
doi: 10.12305/j.issn.1001-506X.2022.10.25 |
SUN Z Q , WANG Z G , MENG F , et al. Novel ballistic tracking arithmetic based on EKF and ballistic kinematics equations[J]. Systems Engineering and Electronics, 2022, 44 (10): 3207- 3212.
doi: 10.12305/j.issn.1001-506X.2022.10.25 |
|
10 |
FARINA A , RISTIC B , BENVENUTI D . Tracking a ballistic target: comparison of several nonlinear filters[J]. IEEE Trans.on Aerospace and Electronic Systems, 2002, 38 (3): 854- 867.
doi: 10.1109/TAES.2002.1039404 |
11 |
ZHONG L , LI Y , CHENG W , et al. Robust cognitive radar tracking based on adaptive unscented Kalman filter in uncertain environments[J]. IEEE Access, 2020, 8, 163405- 163418.
doi: 10.1109/ACCESS.2020.3019837 |
12 |
GAO B B , HU G G , GAO S S . Multi-sensor optimal data fusion based on the adaptive fading unscented Kalman filter[J]. Sensors, 2018, 18 (2): 488- 509.
doi: 10.3390/s18020488 |
13 | SUMANTA K N, VIMAL B, ABHINOY K S. Performance ana-lysis of cubature rule based Kalman filter for target tracking[C]// Proc. of the 17th India Council International Conference, 2020. |
14 |
BORDONARO S , WILLETT P , BAR-SHALOM Y , et al. Converted measurement sigma point Kalman filter for bistatic sonar and radar tracking[J]. IEEE Trans.on Aerospace and Electronic Systems, 2019, 55 (1): 147- 159.
doi: 10.1109/TAES.2018.2849179 |
15 |
LIU H Q , ZHOU Z L , YU L , et al. Two unbiased converted measurement Kalman filtering algorithms with range rate[J]. IET Radar, Sonar and Navigation, 2018, 12 (11): 1217- 1224.
doi: 10.1049/iet-rsn.2018.5154 |
16 | 张敬艳, 修建娟, 董凯. 噪声非高斯条件下基于最大相关熵准则的容积滤波算法[J]. 兵器装备工程学报, 2021, 42 (8): 245- 250. |
ZHANG J Y , XIU J J , DONG K . Maximum comentropy cubature Kalman filter under non-Gaussian noise[J]. Journal of Ordnance Equipment Engineering, 2021, 42 (8): 245- 250. | |
17 | 赵艳丽, 李宏, 高向东, 等. 不同坐标系下中段弹道目标跟踪算法研究[J]. 现代雷达, 2011, 33 (5): 54- 59. |
ZHAO Y L, LI H, GAO X D, et al. A study on ballistic target tracking in midcourse of various coordinate systems, 2011, 33(5): 54-59. | |
18 | DAVIS B, BLAIR W D. Adaptive Gaussian mixture modeling for tracking of long range targets[C]//Proc. of the IEEE Aerospace Conference, 2016. |
19 | TIAN X, BAR-SHALOM Y, CHEN G, et al. Track splitting technique for the contact lens problem[C]//Proc. of the 14th International Conference on Information Fusion, 2011. |
20 |
LI X R , JILKOV V P . A survey of maneuvering target tracking part Ⅱ: motion models of ballistic and space targets[J]. IEEE Trans.on Aerospace and Electronic Systems, 2010, 46 (1): 96- 119.
doi: 10.1109/TAES.2010.5417150 |
21 | MARTA O F, ADAM K, ANDRZEJ W. Model of ballistic targets'dynamics used for trajectory tracking algorithms[C]//Proc. of the Conference on Reconnaissance and Electronic Warfare Systems, 2017. |
22 | 巫春玲, 韩崇昭. 用于弹道目标跟踪的有限差分扩展卡尔曼滤波算法[J]. 西安交通大学学报, 2008, 42 (2): 142- 143. |
WU C L , HAN C Z . Finite difference extended Kalman filtering algorithm for ballistic target tracking[J]. Journal of Xi'an Jiaotong University, 2008, 42 (2): 142- 143. | |
23 | SINGH N K, SHOVAN B, SAMAR B. A comparison of several nonlinear filters for ballistic missile tracking on reentry[C]//Proc. of the IEEE First International Conference on Control, Measurement and Instrumentation, 2016: 459-463. |
24 | MEI W, BAR-SHALOM Y. Unbiased Kalman filter using converted measurements: revisit[C]//Proc. of the Signal and Data Processing of Small Targets, 2009. |
25 | DUAN Z , HAN C , LI X R . Comments on unbiased converted measurements for tracking[J]. IEEE Trans.on Aerospace and Electronic Systems, 2004, 12 (4): 1374. |
26 |
BORDONARO S , WILLETT P , BAR-SHALOM Y . Decorrelated unbiased converted measurement Kalman filter[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (2): 1431- 1444.
doi: 10.1109/TAES.2014.120563 |
27 | 彭瀚, 程婷. 基于预测信息的量测转换序贯滤波目标跟踪[J]. 系统工程与电子技术, 2019, 41 (3): 549- 554. |
PENG H , CHENG T . Sequential filtering for target tracking based on the prediction position conditioned measurement conversion[J]. Systems Engineering and Electronics, 2019, 41 (3): 549- 554. | |
28 |
ROMEO K , WILLETT P , BAR-SHALOM Y . Particle filter tracking for banana and contact lens problems[J]. IEEE Trans.on Aerospace and Electronic Systems, 2015, 51 (2): 1098- 1110.
doi: 10.1109/TAES.2014.130670 |
29 |
LERRO D , BAR-SHALOM Y . Tracking with debiased consistent converted measurements versus EKF[J]. IEEE Trans.on Aerospace and Electronic Systems, 1993, 29 (3): 1015- 1022.
doi: 10.1109/7.220948 |
30 |
TIAN X , BAR-SHALOM Y . Coordinate conversion and tracking for very long range radars[J]. IEEE Trans.on Aerospace and Electronic Systems, 2009, 45 (3): 1073- 1088.
doi: 10.1109/TAES.2009.5259184 |
31 | 周红波, 耿伯英. 基于转换测量卡尔曼滤波算法的目标跟踪研究[J]. 系统仿真学报, 2008, (3): 682-684, 688. |
ZHOU H B , GENG B Y . Converted measurements Kalman filter algorithm for target tracking[J]. Journal of System Simulation, 2008, (3): 682-684, 688. |
[1] | Hongliang ZHAO, Yuanwen ZHANG, Leping YANG, Huan HUANG, Tian MA. Method and application analysis of remote magnetic controlling for space target [J]. Systems Engineering and Electronics, 2024, 46(1): 261-270. |
[2] | Wenhao BI, Jie ZHOU, An ZHANG, Li LIU. JPDA algorithm based on maximum entropy fuzzy clustering in clutter environment [J]. Systems Engineering and Electronics, 2023, 45(7): 1920-1927. |
[3] | Sen WANG, Qinglong BAO, Jiameng PAN, Qian ZHU. Target tracking for noncooperative bistatic radar based on improved probability hypothesis density filter [J]. Systems Engineering and Electronics, 2023, 45(7): 2002-2009. |
[4] | Kan SHU, Xianrong WAN, Jianxin YI, Deqiang XIE, Yueyang HU, Yun TONG. 3D target tracking for duel coordinate passive radar based on state decoupling [J]. Systems Engineering and Electronics, 2023, 45(6): 1658-1666. |
[5] | Zhengwei LIU, Ying CHEN, Yaobing LU. PHD filter for small-angle crossing of multi-target trajectories [J]. Systems Engineering and Electronics, 2023, 45(4): 982-990. |
[6] | Yi ZHANG, Hao YU, Xiuxia YANG, Zijie JIANG. Integrated design of group formation control and tracking of UAV swarm [J]. Systems Engineering and Electronics, 2023, 45(3): 848-858. |
[7] | Yunpu ZHANG, Ganlin SHAN, Yan HUANG, Qiang FU. Multiple mobile sensors scheduling method for ground target detection and tracking considering blind zone [J]. Systems Engineering and Electronics, 2023, 45(2): 453-464. |
[8] | Weiyi CHEN, Fan HE, Guoqiang LIU, Weiwei MAO. Variable structure interactive multiple model filtering and smoothing algorithm [J]. Systems Engineering and Electronics, 2023, 45(12): 4005-4012. |
[9] | Bowen HENG, Cuiyun LI, Xiang LI. 3D extended target PMBM tracking algorithm based on moving least square [J]. Systems Engineering and Electronics, 2023, 45(11): 3411-3418. |
[10] | Lei AN, Zhaorui LI, Bing JI. Non-myopic scheduling method for mobile active/passive sensor in clutter environment [J]. Systems Engineering and Electronics, 2023, 45(1): 165-174. |
[11] | Kexin ZHAO, Qingbo GAN, Zhitao YANG, Jing LIU. Multiple-roots problem of initial orbit determination of near-Earth object and space target [J]. Systems Engineering and Electronics, 2022, 44(9): 2914-2921. |
[12] | Zhuling QIU, Yufei ZHA, Zhenyu LI, Yuming LI, Peng ZHANG, Chuan ZHU. Temporal regularized correlation filter tracking algorithm based on multi-model distillation [J]. Systems Engineering and Electronics, 2022, 44(8): 2448-2456. |
[13] | Zilin HOU, Ting CHENG, Han PENG. GMPHD based on measurement conversion sequential filtering for maneuvering target tracking [J]. Systems Engineering and Electronics, 2022, 44(8): 2474-2482. |
[14] | Haoran SHI, Faxing LU, Jiangxin QI, Guang YANG. Cooperative target tracking of UAVs based on aided beacon [J]. Systems Engineering and Electronics, 2022, 44(7): 2302-2310. |
[15] | Shuai WANG, Jianjun XIANG, Fang PENG, Shujuan TANG. Target tracking algorithm based on a new steepest descent method [J]. Systems Engineering and Electronics, 2022, 44(5): 1512-1519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||