Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (11): 3744-3753.doi: 10.12305/j.issn.1001-506X.2024.11.16
• Systems Engineering • Previous Articles Next Articles
Hao CHEN, Gang SUN, Shuang PENG, Jiangjiang WU
Received:
2022-06-28
Online:
2024-10-28
Published:
2024-11-30
Contact:
Shuang PENG
CLC Number:
Hao CHEN, Gang SUN, Shuang PENG, Jiangjiang WU. Dynamic rescheduling method for TT&C and data transmission resources based on multi-objective optimization[J]. Systems Engineering and Electronics, 2024, 46(11): 3744-3753.
1 | CHEN H , ZHAI B R , WU J J , et al. A satellite observation data transmission scheduling algorithm oriented to data topics[J]. International Journal of Aerospace Engineering, 2020, 2020, 1- 16. |
2 |
LI Y Q , WANG R X , LIU Y , et al. Satellite range scheduling with the priority constraint: an improved genetic algorithm using a station ID encoding method[J]. Chinese Journal of Aeronautics, 2015, 28 (3): 789- 803.
doi: 10.1016/j.cja.2015.04.012 |
3 | ANTONIOU M, PETELIN G, PAPA G. On formulating the ground scheduling problem as a multi-objective bilevel problem[C]// Proc. of the International Conference on Bioinspired Methods and Their Applications, 2020: 177-188. |
4 |
XHAFA F , IP A . Optimisation problems and resolution methods in satellite scheduling and space-craft operation: a survey[J]. Enterprise Information Systems, 2021, 15 (8): 1022- 1045.
doi: 10.1080/17517575.2019.1593508 |
5 | WU G H , LUO Q Z , ZHU Y Q , et al. Flexible task scheduling in data relay satellite networks[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 58 (2): 1055- 1068. |
6 |
CUI J T , ZHANG X . Application of a multi-satellite dynamic mission scheduling model based on mission priority in emergency response[J]. Sensors, 2019, 19 (6): 1430.
doi: 10.3390/s19061430 |
7 | CHEN H , YANG S , LI J , et al. Exact and heuristic methods for observing task-oriented satellite cluster agent team formation[J]. Mathematical Problems in Engineering, 2018, 2018, 2103625. |
8 | 陈浩, 李军, 杜春, 等. 对地观测卫星任务规划与调度技术[M]. 北京: 国防工业出版社, 2021. |
CHEN H , LI J , DU C , et al. Task planning and scheduling technology for earth observation satellite[M]. Beijing: National Defense Industry Press, 2021. | |
9 | 习婷, 李菊芳. 面向动态需求的成像卫星滚动式重调度方法研究[J]. 中国管理科学, 2015, (S1): 269- 274. |
XI T , LI J F . The rolling horizon method for EOS scheduling with dynamic requests[J]. Chinese Journal of Management Science, 2015, (S1): 269- 274. | |
10 |
WANG J , ZHU X , YANG L T , et al. Towards dynamic real-time scheduling for multiple earth observation satellites[J]. Journal of Computer and System Sciences, 2015, 81 (1): 110- 124.
doi: 10.1016/j.jcss.2014.06.016 |
11 | DENG B Y, JIANG C X, KUANG L L, et al. Preemptive dynamic scheduling algorithm for data relay satellite systems[C]// Proc. of the IEEE International Conference on Communications, 2017. |
12 |
SUN H Q , XIA W , HU X X , et al. Earth observation satellite scheduling for emergency tasks[J]. Journal of Systems Engineering and Electronics, 2019, 30 (5): 931- 945.
doi: 10.21629/JSEE.2019.05.11 |
13 |
LI Y Q , WANG R X , XU M Q . Rescheduling of observing spacecraft using fuzzy neural network and ant colony algorithm[J]. Chinese Journal of Aeronautics, 2014, 27 (3): 678- 687.
doi: 10.1016/j.cja.2014.04.027 |
14 |
LI J , CHEN H , JING N . A data transmission scheduling algorithm for rapid-response earth-observing operations[J]. Chinese Jour-nal of Aeronautics, 2014, 27 (2): 349- 364.
doi: 10.1016/j.cja.2014.02.014 |
15 | ZHENG Z , GUO J , GILL E . Onboard autonomous mission re-planning for multi-satellite system[J]. Acta Astronautica, 2018, 145 (4): 28- 43. |
16 | CHEN H, ZHOU Y R, DU C, et al. A satellite cluster data transmission scheduling method based on genetic algorithm with rote learning operator[C]//Proc. of the IEEE Congress on Evolutionary Computation, 2016: 5076-5083. |
17 | 林鹏, 晏坚, 费立刚, 等. 中继卫星系统的多星多天线动态调度方法[J]. 清华大学学报, 2015, 55 (5): 491-496, 502. |
LING P , YAN J , FEI L G , et al. Multi-satellite and multi-antenna TDRSS dynamic scheduling method[J]. Journal of Tsinghua University, 2015, 55 (5): 491-496, 502. | |
18 | WANG C, CHEN H, ZHAI B R, et al. Satellite observing mission scheduling method based on case-based learning and a genetic algorithm[C]//Proc. of the 28th IEEE International Conference on Tools with Artificial Intelligence, 2016: 627-634. |
19 |
WANG H J , ZHEN Y , ZHOU W G , et al. Online scheduling of image satellites based on neural networks and deep reinforcement learning[J]. Chinese Journal of Aeronautics, 2019, 32 (4): 1011- 1019.
doi: 10.1016/j.cja.2018.12.018 |
20 | 罗棕, 杜春, 陈浩, 等. 基于Transformer层次预测的多星应急观测任务规划方法[J]. 航空学报, 2021, 42 (4): 524271. |
LUO Z , DU C , CHEN H , et al. Multi-satellite cheduling approach for emergency scenarios based on hierarchical forecasting with transformer network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (4): 524271. | |
21 | 孙刚, 陈浩, 彭双, 等. 一种基于偏好MOEA的卫星地面站资源多目标优化算法[J]. 航空学报, 2021, 42 (4): 524475. |
SUN G , CHEN H , PENG S , et al. Multi-objective optimization algorithm for satellite range scheduling based on preference MOEA[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (4): 524475. | |
22 | 孙刚, 彭双, 陈浩, 等. 面向测控数传资源一体化场景的卫星地面站资源多目标优化方法[J]. 航空学报, 2022, 43 (9): 326114. |
SUN G , PENG S , CHEN H , et al. Multi-objective optimization method oriented to integrated scenario of TT&C resources and data transmission resources[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (9): 326114. | |
23 | 孙刚, 伍江江, 陈浩, 等. 一种基于切比雪夫距离的隐式偏好多目标进化算法[J]. 计算机科学, 2022, 49 (6): 297- 304. |
SUN G , WU J J , CHEN H , et al. A hidden preference-based multi-objective evolutionary algorithm based on Chebyshev distance[J]. Computer Science, 2022, 49 (6): 297- 304. | |
24 |
DU Y , XING L , ZHANG J , et al. MOEA based memetic algorithms for multi-objective satellite range scheduling problem[J]. Swarm and Evolutionary Computation, 2019, 50, 100576.
doi: 10.1016/j.swevo.2019.100576 |
25 |
DEB K , JAIN H . An evolutionary many-objective optimization algorithm using reference point-based nondominated sorting approach, Part Ⅰ: solving problems with box constraints[J]. IEEE Trans.on Evolutionary Computation, 2014, 18 (4): 577- 601.
doi: 10.1109/TEVC.2013.2281535 |
26 | MACCORMICK J . What can be computed?: a practical guide to the theory of computation[M]. Princeton: Princeton University Press, 2018. |
27 | LI L M, CHEN H, WU J J, et al. Preference-based evolutionary algorithms for many-objective mission planning of agile earth observation satellites[C]//Proc. of the Genetic and Evolutionary Computation Conference Companion, 2018. |
28 | HADKA D. MOEAFramework[EB/OL]. [2022-6-16]. http://moeaframework.org/. |
29 | Analytical Graphics Inc. Satellite tool kit 10.1.3[EB/OL]. [2022-6-16]. https://www.agi.com/. |
[1] | Tao HONG, Fan WANG, Zhi LI, Zhiwei ZHONG, Xiaojin DING, Ziwei LIU, Gengxin ZHANG. Business-driven terminal mode switching method for low Earth orbit satellite-based Internet of Things [J]. Systems Engineering and Electronics, 2024, 46(8): 2867-2876. |
[2] | Qiangqiang XU, Hua CHAI. Optimization of task dispatch plan for vehicular optical observation equipment based on NSGA-Ⅱ [J]. Systems Engineering and Electronics, 2024, 46(7): 2393-2400. |
[3] | Hanwei WANG, Jiacheng ZHANG, Yuehe ZHU. A trajectory planning method for proximity operations of heterogeneous formation satellites [J]. Systems Engineering and Electronics, 2024, 46(3): 1048-1057. |
[4] | Yanfeng YE, Mengjun MING, Hongtao LEI. Optimal configuration of local field microgrid based on NSGA-Ⅱ algorithm [J]. Systems Engineering and Electronics, 2024, 46(11): 3800-3806. |
[5] | Zelun GAO, Shaoqiu ZHENG, Rupeng LIANG, Yanyan HUANG. Model of strike target preference under super-network system operation [J]. Systems Engineering and Electronics, 2024, 46(1): 182-189. |
[6] | Yong DENG, Feng YAO, Lining XING, Lei HE. Inter-satellite data transmission method in satellite network based on hybrid evolutionary algorithm [J]. Systems Engineering and Electronics, 2023, 45(9): 2931-2940. |
[7] | Liyao WANG, Jin ZHANG, Hongxi ZHOU, Kemao WANG. Planning of multi-station accessing multi-satellite based on physical planning [J]. Systems Engineering and Electronics, 2023, 45(8): 2514-2520. |
[8] | Hongzhou ZHAI, Hua ZHANG, Linna WU, Hequn BU, Kaixiang GONG. Optimization algorithm for reliability redundancy design based on collaborative balance [J]. Systems Engineering and Electronics, 2023, 45(12): 4084-4089. |
[9] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
[10] | Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject [J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210. |
[11] | Junkui TANG, Zheng LIU, Rong XIE, Bo ZENG. Optimal design method for sparse array of MIMO radar [J]. Systems Engineering and Electronics, 2022, 44(12): 3661-3666. |
[12] | Hanyang WANG, Liang CHEN, Hai XU, Jingbo BAI. UAV online trajectory planning based on MOEA/D-ARMS [J]. Systems Engineering and Electronics, 2022, 44(11): 3505-3514. |
[13] | Rongwei CUI, Wei HAN, Xichao SU, Liguo WANG, Yujie LIU. Integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration for pre-flight preparation stage [J]. Systems Engineering and Electronics, 2021, 43(7): 1884-1893. |
[14] | Jing ZHOU, Xiaozhe ZHAO, Zhen XU, Zhong LIN, Xiaopan ZHANG. Many-objective task allocation method based on D-NSGA-Ⅲ algorithm for multi-UAVs [J]. Systems Engineering and Electronics, 2021, 43(5): 1240-1247. |
[15] | Boyuan XIA, Kewei YANG, Zhiwei YANG, Xiaoke ZHANG, Danling ZHAO. Multi-objective optimization of equipment portfolio based on kill-web evaluation [J]. Systems Engineering and Electronics, 2021, 43(2): 399-409. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||