Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (7): 1884-1893.doi: 10.12305/j.issn.1001-506X.2021.07.20
• Systems Engineering • Previous Articles Next Articles
Rongwei CUI1, Wei HAN1, Xichao SU2,*, Liguo WANG3, Yujie LIU1
Received:
2020-10-22
Online:
2021-06-30
Published:
2021-07-08
Contact:
Xichao SU
CLC Number:
Rongwei CUI, Wei HAN, Xichao SU, Liguo WANG, Yujie LIU. Integrated optimization of carrier-based aircraft flight deck operations scheduling and resource configuration for pre-flight preparation stage[J]. Systems Engineering and Electronics, 2021, 43(7): 1884-1893.
Table 1
The support missions of carrier-based aircraft fleet"
保障任务 | 保障停机位编号 | |||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
飞机类型; 进入保障停机位并系留完毕时间/min | ||||||||||||||||
任务1(连续出动) | C; 5.0 | D; 4.8 | A; 4.2 | A; 4.7 | B; 2.5 | B; 2.8 | B; 3.0 | B; 3.0 | - | - | - | - | - | - | - | - |
任务2(连续出动) | C; 6.9 | D; 6.7 | C; 5.9 | A; 5.7 | A; 4.5 | A; 4.2 | A; 4.9 | B; 4.7 | B; 3.3 | B; 3.0 | B; 3.2 | E; 3.2 | - | - | - | - |
任务3(分波出动) | C; 7.1 | D; 6.9 | C; 6.1 | A; 5.9 | A; 0 | A; 0 | A; 0 | A; 0 | A; 4.7 | B; 4.4 | B; 5.1 | B; 4.9 | B; 3.9 | B; 3.5 | B; 3.2 | E; 2.7 |
1 | 刘翱, 刘克. 舰载机保障作业调度问题研究进展[J]. 系统工程理论与实践, 2017, 37 (1): 49- 60. |
LIU A , LIU K . Advances in carrier-based aircraft deck operation scheduling[J]. Systems Engineering-Theory & Practice, 2017, 37 (1): 49- 60. | |
2 | U.S. Naval Air Systems Command. CVN flight-hanger deck NATOPS manual[R]. Washington: NACYAIR 00-80T-120, 2008-10-04. |
3 |
WANG X W , LIU J , SU X C , et al. A review on carrier aircraft dispatch path planning and control on deck[J]. Chinese Journal of Aeronautics, 2020, 33 (12): 3039- 3057.
doi: 10.1016/j.cja.2020.06.020 |
4 |
RYAN J C , BANERJEE A G , CUMMINGS M L , et al. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations[J]. IEEE Trans.on Cybernetics, 2014, 44 (6): 761- 773.
doi: 10.1109/TCYB.2013.2271694 |
5 | 韩维, 苏析超, 陈俊锋. 舰载机多机一体化机务保障调度方法[J]. 系统工程与电子技术, 2015, 37 (4): 809- 816. |
HAN W , SU X C , CHEN J F . Integrated maintenance support scheduling method of multi-carrier aircraft[J]. Systems Engineering and Electronics, 2015, 37 (4): 809- 816. | |
6 | 苏析超, 韩维, 张勇, 等. 考虑人机匹配模式的舰载机甲板机务勤务保障调度算法[J]. 航空学报, 2018, 39 (12): 221- 239. |
SU X C , HAN W , ZHANG Y , et al. Scheduling algorithm for maintenance and service support of carrier-based aircraft on flight deck with different man-aircraft matching patterns[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (12): 221- 239. | |
7 | SU X C , HAN W , WU Y , et al. A proactive robust scheduling method for aircraft carrier flight deck operations with stochastic durations[J]. Complexity, 2018, 1, 1- 38. |
8 |
SU X C , HAN W , WU Y , et al. A robust scheduling optimization method for flight deck operations of aircraft carrier with ter nary interval durations[J]. IEEE Access, 2018, 6, 69918- 69936.
doi: 10.1109/ACCESS.2018.2879503 |
9 | YUAN P L , HAN W , SU X C , et al. A dynamic scheduling method for carrier aircraft support operation under uncertain con ditions based on rolling horizon strategy[J]. Applied S ciences, 2018, 8 (9): 1546- 1568. |
10 | YU L F , ZHU C , SHI J M , et al. An extended flexible job shop scheduling model for flight deck scheduling with priority, parallel operations, and sequence flexibility[J]. Scientific Programming, 2017, 2017, 2463252. |
11 | 李耀宇, 朱一凡, 杨峰, 等. 基于逆向强化学习的舰载机甲板调度优化方案生成方法[J]. 国防科技大学学报, 2013, 35 (4): 171- 175. |
LI Y Y , ZHU Y F , YANG F , et al. Inverse reinforcement learning based optimal schedule generation approach for carrier aircraft on flight deck[J]. Journal of National University of Defense Technology, 2013, 35 (4): 171- 175. | |
12 |
QI C , WANG D . Dynamic aircraft carrier flight deck task planning based on HTN[J]. IFAC-Papers on Line, 2016, 49 (12): 1608- 1613.
doi: 10.1016/j.ifacol.2016.07.810 |
13 |
COELLO C A C . Evolutionary multi-objective optimization: a historical view of the field[J]. IEEE Computational Intelligence Magazine, 2006, 1 (1): 28- 36.
doi: 10.1109/MCI.2006.1597059 |
14 | DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans.on Evolutionary Computation, 2002, 6 (2): 191- 197. |
15 | SRINIVAS N , DEB K . Multi-objective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1995, 2 (3): 221- 248. |
16 | 刘继新, 江灏, 董欣放, 等. 基于空中交通密度的进场航班动态协同排序方法[J]. 航空学报, 2020, 41 (7): 279- 294. |
LIU J X , JIANG H , DONG X F , et al. Dynamic collaborative sequencing method for arrival flights based on air traffic density[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (7): 279- 294. | |
17 |
TALEBITOOTI R , GOHARI H D , ZARASTVAND M R . Multi objective optimization of sound transmission across laminated composite cylindrical shell lined with porous core investigating non-dominated sorting genetic algorithm[J]. Aerospace Science and Technology, 2017, 69, 269- 280.
doi: 10.1016/j.ast.2017.06.008 |
18 |
PU M J , WANG J H , ZHANG D X , et al. Optimal small satellite orbit design based on robust multi-objective optimization method[J]. Aerospace Science and Technology, 2017, 70, 339- 350.
doi: 10.1016/j.ast.2017.08.016 |
19 |
YEH C T . An improved NSGA2 to solve a bi-objective optimization problem of multi-state electronic transacti on network[J]. Reliability Engineering and System Safety, 2019, 191, 106578.
doi: 10.1016/j.ress.2019.106578 |
20 |
WEN X Y , WANG K H , LI H , et al. A two-stage solution method based on NSGA-Ⅱ for green multi-objective integrated process planning and scheduling in a battery packaging machinery workshop[J]. Swarm and Evolutionary Computation, 2021, 61, 100820.
doi: 10.1016/j.swevo.2020.100820 |
21 |
KASHYAP N , KUMARI A C , CHHIKARA R . Multi-objective Optimization using NSGA Ⅱ for service composition in IoT[J]. Pro cedia Computer Science, 2020, 167, 1928- 1933.
doi: 10.1016/j.procs.2020.03.214 |
22 | CAO Y , DHAHAD H A , MUSTAFA MOHAMED A , et al. Thermo-economic investigation and multi-objective optimization of a novel enhanced heat pump system with zeotropic mixture using NSGA-Ⅱ[J]. Applied Thermal Engineering, 2020, 194, 116374. |
23 | KOLISCH R , HARTMANN S . Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis[M]. Boston: Springer US, 1999. |
24 |
DEBELS D , DE REYCK B , LEUS R , et al. A hybrid scatter search/electromagnetism meta-heuristic for project scheduling[J]. European Journal of Operational Research, 2006, 169 (2): 638- 653.
doi: 10.1016/j.ejor.2004.08.020 |
25 |
SURESH M , DUTTA P , JAIN K . Resource constrained multi-project scheduling problem with resource transfer times[J]. Asia-Pacific Journal of Operational Research, 2015, 32 (6): 1550048- 1550077.
doi: 10.1142/S0217595915500487 |
26 |
KADRI R L , BOCTOR F F . An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: the single mode case[J]. European Journal of Operational Research, 2018, 265 (2): 454- 462.
doi: 10.1016/j.ejor.2017.07.027 |
27 |
RAHMAN H F , CHAKRABORTTY R K , RYAN M J . Memetic algorithm for solving resource constrained project scheduling problems[J]. Automation in Construction, 2020, 111, 103052.
doi: 10.1016/j.autcon.2019.103052 |
28 | 郭霖瀚, 康锐, 文佳. 以保障活动为中心的装备保障资源数量预测[J]. 航空学报, 2009, 30 (5): 919- 924. |
GUO L H , KANG R , WEN J . Quantitative forecast support activity centered equipment support resources[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30 (5): 919- 924. | |
29 |
KRVGER D , SCHOLL A . A heuristic solution framework for the resource constrained multi-project scheduling problem with sequence-dependent transfer times[J]. European Journal of Operational Research, 2009, 197 (2): 492- 508.
doi: 10.1016/j.ejor.2008.07.036 |
30 | HARTMANN S , KOLISCH R . Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem[J]. European Journal of Operational Research, 2000, 127 (2): 394- 407. |
31 | KOLISCH R . Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation[J]. European Journal of Operational Research, 1996, 90 (2): 320- 333. |
[1] | Yong ZHANG, Changjiu LI, Xichao SU, Rongwei CUI. Maintenance task scheduling of carrier-based aircraft fleet in hangar based on HTLBO algorithm [J]. Systems Engineering and Electronics, 2022, 44(9): 2858-2868. |
[2] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
[3] | Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject [J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210. |
[4] | Boyuan XIA, Kewei YANG, Zhiwei YANG, Xiaoke ZHANG, Danling ZHAO. Multi-objective optimization of equipment portfolio based on kill-web evaluation [J]. Systems Engineering and Electronics, 2021, 43(2): 399-409. |
[5] | Chunming TIAN, An YANG, Le YE, Jianxing LI, Yuchen HE. End-to-end antenna optimization based on Bayesian optimization algorithm [J]. Systems Engineering and Electronics, 2021, 43(12): 3413-3419. |
[6] | Bing WAN, Wei HAN, Yong LIANG, Fang GUO. Optimization algorithm of carrier-based aircraft sortie departure scheduling [J]. Systems Engineering and Electronics, 2021, 43(12): 3624-3634. |
[7] | Bing WAN, Wei HAN, Yong LIANG, Xichao SU. Research on optimization of carrier-based aircraft fleetrecovery scheduling based on index function [J]. Systems Engineering and Electronics, 2021, 43(10): 2918-2930. |
[8] | Lei LAI, Dewei WU, Kun ZOU, Kun HAN, Hailin LI. Three dimensional route planning of UAV based on the multi-criterion interactive membrane evolutionary algorithm [J]. Systems Engineering and Electronics, 2021, 43(1): 138-146. |
[9] | Yadong WANG, Quan SHI, Wei XIA, Cai CHEN. Structure optimization of spare parts supply network based on hyper heuristic algorithm [J]. Systems Engineering and Electronics, 2020, 42(3): 620-629. |
[10] | Chunshan DING. Survey on progress and prospect of sensor management [J]. Systems Engineering and Electronics, 2020, 42(12): 2761-2770. |
[11] | Wubin MA, Rui WANG, Weichao WANG, Yahui WU, Su DENG, Hongbin HUANG. Micro-service composition deployment and scheduling strategy based on evolutionary multi-objective optimization [J]. Systems Engineering and Electronics, 2020, 42(1): 90-100. |
[12] | LI Ruiyang, WANG Zhixue, YU Minggang, HE Hongyue. Multi-objective portfolio optimization of system-of-systems based on robust capabilities#br# [J]. Systems Engineering and Electronics, 2019, 41(5): 1034-1042. |
[13] | SUN Peng, WU Junsheng, WANG Xun, JIAO Zhiqiang, ZHANG Jieyong. Dynamic resources scheduling method based on multi-objective optimization in C2 organization [J]. Systems Engineering and Electronics, 2019, 41(4): 793-800. |
[14] | CHU Xiaogeng, MA Zhengwei, CHEN Xingjun. Look-ahead margin-greedy constructive algorithm for the multi-objective optimization of the weapon target assignment problem [J]. Systems Engineering and Electronics, 2019, 41(10): 2252-2259. |
[15] | WU Wenhai, WANG Jie, GAO Li, ZHANG Yang, GUO Xiaofeng. Analysis on MAGIC CARPET carrier landing technology [J]. Systems Engineering and Electronics, 2018, 40(9): 2079-2091. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||