Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (11): 3800-3806.doi: 10.12305/j.issn.1001-506X.2024.11.22
• Systems Engineering • Previous Articles Next Articles
Yanfeng YE, Mengjun MING, Hongtao LEI
Received:
2022-07-13
Online:
2024-10-28
Published:
2024-11-30
Contact:
Hongtao LEI
CLC Number:
Yanfeng YE, Mengjun MING, Hongtao LEI. Optimal configuration of local field microgrid based on NSGA-Ⅱ algorithm[J]. Systems Engineering and Electronics, 2024, 46(11): 3800-3806.
Table 1
Selection and settings of power generation equipment for each node"
节点 | 光伏设备 | 风机设备 | 垃圾发电 | 蓄电池 | 柴油发电机 | 大发电车 | 小发电车 |
节点1 | √ | √ | √ | √ | √ | 可达 | 可达 |
节点2 | √ | - | - | √ | √ | 可达 | 可达 |
节点3 | - | - | - | - | √ | 可达 | 可达 |
节点4 | √ | - | - | √ | √ | 不可达 | 可达 |
节点5 | √ | - | - | √ | √ | 可达 | 可达 |
节点6 | √ | - | - | √ | √ | 不可达 | 可达 |
节点7 | √ | - | - | √ | √ | 可达 | 可达 |
节点8 | √ | - | - | √ | √ | 可达 | 可达 |
节点9 | - | - | - | - | √ | 不可达 | 可达 |
节点10 | √ | √ | √ | √ | √ | 可达 | 可达 |
Table 2
Equipment parameter settings"
设备 | 设备参数 | 体积/m3 | 购买单价/万元 | 运维单价/万元 |
光伏设备 | 峰值功率2 kW/套 | 0.5 | 0.5 | 0.02 |
风机设备 | 额定功率6 kW/台 | 3 | 2 | 0.1 |
启动风速3 m/s | ||||
额定风速10 m/s | ||||
停机风速20 m/s | ||||
柴油发电机 | 额定功率5 kW | 0.2 | 0.6 | 0.03 |
油耗量0.2升/(kW·h) | ||||
垃圾发电设备 | 日发电量120 kW·h | - | 8 | 0.4 |
蓄电池 | 电池容量2 kW·h | 0.12 | 0.5 | 0.02 |
大发电车 | 额定功率90 kW | - | 20 | 1 |
油耗量0.1升/(kW·h) | ||||
小发电车 | 额定功率50 kW | - | 10 | 0.5 |
油耗量0.1升/(kW·h) |
Table 4
Tram dispatch situation"
时间 | 负载位置 | 大发电车 | 小发电车 | 需发电量 |
第6天 | 节点3 | - | 1 | 24 |
第7天 | 节点3 | - | 1 | 24 |
第8天 | 节点3 | - | 1 | 24 |
第9天 | 节点3 | - | 1 | 24 |
第34天 | 节点1 | - | 1 | 33 |
节点10 | 1 | - | 110 | |
第35天 | 节点1 | - | 1 | 33 |
节点10 | 1 | - | 110 | |
第36天 | 节点1 | - | 1 | 33 |
节点10 | 1 | - | 110 | |
第40天 | 节点1 | - | 1 | 33 |
节点3 | 1 | - | 96 | |
第41天 | 节点1 | - | 1 | 33 |
节点3 | 1 | - | 96 | |
第42天 | 节点1 | - | 1 | 33 |
节点3 | 1 | - | 96 | |
第43天 | 节点1 | - | 1 | 33 |
节点3 | 1 | - | 96 | |
第82天 | 节点10 | - | 1 | 41.46 |
第83天 | 节点10 | - | 1 | 41.46 |
第84天 | 节点10 | - | 1 | 41.46 |
第85天 | 节点10 | - | 1 | 41.46 |
1 | 张国平, 王维俊, 米红菊, 等. 基于改进粒子群算法的岛礁孤立多能源军事供电系统运行优化研究[J]. 军事运筹与系统工程, 2021, 35 (3): 52- 58. |
ZHANG G P , WANG W J , MI H J , et al. Research on operation optimization of island reef isolated multi-energy military power supply system based on improved particle swarm optimization algorithm[J]. Military Operations Research and Systems Engineering, 2021, 35 (3): 52- 58. | |
2 | 高明宇, 刘金宁, 冯长江. 军用独立型光储柴微电网模态转换控制策略[J]. 兵工自动化, 2021, 40 (6): 1- 7. |
GAO M Y , LIU J N , FENG C J . Mode conversion control strategy of military independent optical diesel storage microgrid[J]. Ordnance Automation, 2021, 40 (6): 1- 7. | |
3 | 李瑜, 张占强, 孟克其劳, 等. 基于分层控制的孤岛微电网储能优化控制策略[J]. 储能科学与技术, 2022, 11 (1): 176- 184. |
LI Y , ZHANG Z Q , MENG K Q L , et al. Optimal control strategy for energy storage of isolated island microgrid based on hierarchical control[J]. Energy Storage Science and Technology, 2022, 11 (1): 176- 184. | |
4 | 李彦生. 主动配电网分布式电源规划分析与研究[J]. 电子设计工程, 2021, 29 (12): 14- 18. |
LI Y S . Analysis and research on distributed generation planning of active distribution network[J]. Electronic Design Engineering, 2021, 29 (12): 14- 18. | |
5 |
张瑞成, 翟电杰, 张怡. 含混合储能系统直流微电网分布式协调控制策略[J]. 兵器装备工程学报, 2020, 41 (4): 232- 236.
doi: 10.11809/bqzbgcxb2020.04.044 |
ZHANG R C , ZHAI D J , ZHANG Y . Distributed coordinated control strategy for DC microgrid with hybrid energy storage system[J]. Journal of Ordnance Engineering, 2020, 41 (4): 232- 236.
doi: 10.11809/bqzbgcxb2020.04.044 |
|
6 | 江宏玲. 考虑储能充放电的孤岛微电网经济优化模型[J]. 实验室研究与探索, 2022, 41 (1): 132- 137. |
JIANG H L . Economic optimization model of island microgrid considering energy storage charge and discharge[J]. Laboratory Research and Exploration, 2022, 41 (1): 132- 137. | |
7 | 冯麒铭, 刘继春, 杨阳方, 等. 含不同类型能源的多局域电网优化经济调度[J]. 电网技术, 2019, 43, 471- 480. |
FENG Q M , LIU J C , YANG Y F , et al. Optimal economic dispatch of multi local power grids with different types of energy[J]. Grid Technology, 2019, 43, 471- 480. | |
8 | 李坚, 吴亮红, 张红强, 等. 基于排序交叉优化算法的冷热电联供微电网经济调度[J]. 电力系统保护与控制, 2021, 49 (18): 137- 145. |
LI J , WU L H , ZHANG H Q , et al. Economic scheduling of combined cooling, heating and power micro grid based on sequencing cross optimization algorithm[J]. Power System Protection and Control, 2021, 49 (18): 137- 145. | |
9 | 伊洪冰, 张爱民, 刘亚东. 面向智能化战争的装备保障[J]. 军事交通学报, 2022, 1 (2): 29- 32. |
YING H B , ZHANG A M , LIU Y D . Equipment support for intelligent warfare[J]. Journal of Military Transportation, 2022, 1 (2): 29- 32. | |
10 | 苗青青, 石春艳, 张香平. 碳中和目标下的光伏发电技术[J]. 化工进展, 2022, 41 (3): 1125- 1131. |
MIAO Q Q , SHI C Y , ZHANG X P . Photovoltaic power generation technology under the goal of carbon neutralization[J]. Progress in Chemical Industry, 2022, 41 (3): 1125- 1131. | |
11 | 温春雪, 路国杰. 并网中小型风电系统最大功率跟踪控制[J]. 可再生能源, 2012, 30 (2): 13- 17. |
WEN C X , LU G J . Maximum power tracking control of grid connected small and medium-sized wind power systems[J]. Renewable Energy Sources, 2012, 30 (2): 13- 17. | |
12 | 曹阳, 温彩凤, 刘珍, 等. 基于RSM和NSGA-Ⅱ法的风电系统经济优化研究[J]. 太阳能学报, 2022, 43 (1): 161- 168. |
CAO Y , WEN C F , LIU Z , et al. Research on economic optimization of wind power system based on RSM and NSGA-Ⅱ method[J]. Journal of Solar Energy, 2022, 43 (1): 161- 168. | |
13 | XIANG Z , ZHU Z . Multi-objective optimization of a composite orthotropic bridge with RSM and NSGA-Ⅱ algorithm[J]. Journal of Constructional Steel Research, 2022, 188, 106938. |
14 | 孙鸿强, 张占月, 方宇强. 基于NSGA-Ⅱ算法的编队卫星重构策略[J]. 上海交通大学学报, 2021, 55 (3): 320- 330. |
SUN H Q , ZHANG Z Y , FANG Y Q . Formation satellite reconstruction strategy based on NSGA-Ⅱ algorithm[J]. Journal of Shanghai Jiaotong University, 2021, 55 (3): 320- 330. | |
15 | 陈嘉贝, 王青平, 叶源, 等. 基于NSGA-Ⅱ的波前相位畸变特性分析[J]. 系统工程与电子技术, 2022, 44 (5): 1439- 1446. |
CHEN J B , WANG Q P , YE Y , et al. Analysis of wavefront phase distortion based on NSGA-Ⅱ[J]. Systems Engineering and Electronics, 2022, 44 (5): 1439- 1446. | |
16 | SU Z P , ZHANG G F , ZHOU X X , et al. Segment-adaptive spread spectrum audio watermarking using NSGA-Ⅱ[J]. Chinese Journal of Electronics, 2021, 30, 727- 735. |
17 |
CHATURVEDI S , RAJASEKAR E , NATARAJAN S . Multi-objective building design optimization under operational uncertainties using the NSGA Ⅱ algorithm[J]. Buildings, 2020, 10 (88)
doi: 10.3390/buildings10050088 |
18 | ZHAGN J T , DONG Z C , CHEN T . Multi-objective optimal allocation of water resources based on the NSGA-2 algorithm while considering intergenerational equity: a case study of the middle and upper reaches of Huaihe River Basin, China[J]. International Journal of Environmental Research and Public Health, 2020, 17 (9289): 9289. |
19 | RASHMI P , DHARAVATH R . NSGA-2 optimized fuzzy inference system for crop plantation correctness index identification[J]. IEEE Trans.on Sustainable Computing, 2022, 7 (1): 172- 188. |
20 | SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proc. of the Hillsdale: L. Erlbaum Associates, 1985: 93-100. |
21 | FONSECA C M, FLEMING P J. Genetic algorithm for multiobjective optimization: formulation, discussion and generation[C]// Proc. of the San Mateo: Morgan Kauffman Publishers, 1993: 416-423. |
22 | SRINIVAS N , DEB K . Multi-objective optimization using non-dominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2 (3): 221- 248. |
23 | ZITZLER E , THIELE L . Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Trans.on Evolutionary Computation, 1999, 3 (4): 257- 271. |
24 | DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans.on Evolutionary Computation, 2002, 6 (2): 182- 197. |
25 | HORN J, NAFPLIOTIS N, GOLDBERG D E. A niched Pareto genetic algorithm for multiobjective optimization[C]//Proc. of the IEEE Congress on Evolutionary Computation, 1994: 82-87. |
26 | KNOWLES J D , CORNE D W . Approximating the non-dominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8 (2): 149- 172. |
27 | CORNE D W , KNOWLES J D , OATES M J . The Pareto-envelope based selection algorithm for multi-objective optimization[M]. Berlin: Springer-Verlag, 2000: 869- 878. |
28 | REN Y Y . Multi-task scheduling of AGVS system based on improved NSGA-Ⅱ algorithm[J]. Journal of Physics: Conference Series, 2021, 1924 (1): 012007. |
[1] | Tao HONG, Fan WANG, Zhi LI, Zhiwei ZHONG, Xiaojin DING, Ziwei LIU, Gengxin ZHANG. Business-driven terminal mode switching method for low Earth orbit satellite-based Internet of Things [J]. Systems Engineering and Electronics, 2024, 46(8): 2867-2876. |
[2] | Qiangqiang XU, Hua CHAI. Optimization of task dispatch plan for vehicular optical observation equipment based on NSGA-Ⅱ [J]. Systems Engineering and Electronics, 2024, 46(7): 2393-2400. |
[3] | Haonan WU, Lingsong DI, Shoukui SI, Bing WAN, Xichao SU. Research on prediction of maneuvering routes of anti-aircraft fire units under long-range joint strikes [J]. Systems Engineering and Electronics, 2024, 46(7): 2413-2423. |
[4] | Hanwei WANG, Jiacheng ZHANG, Yuehe ZHU. A trajectory planning method for proximity operations of heterogeneous formation satellites [J]. Systems Engineering and Electronics, 2024, 46(3): 1048-1057. |
[5] | Hao CHEN, Gang SUN, Shuang PENG, Jiangjiang WU. Dynamic rescheduling method for TT&C and data transmission resources based on multi-objective optimization [J]. Systems Engineering and Electronics, 2024, 46(11): 3744-3753. |
[6] | Zelun GAO, Shaoqiu ZHENG, Rupeng LIANG, Yanyan HUANG. Model of strike target preference under super-network system operation [J]. Systems Engineering and Electronics, 2024, 46(1): 182-189. |
[7] | Yong DENG, Feng YAO, Lining XING, Lei HE. Inter-satellite data transmission method in satellite network based on hybrid evolutionary algorithm [J]. Systems Engineering and Electronics, 2023, 45(9): 2931-2940. |
[8] | Liyao WANG, Jin ZHANG, Hongxi ZHOU, Kemao WANG. Planning of multi-station accessing multi-satellite based on physical planning [J]. Systems Engineering and Electronics, 2023, 45(8): 2514-2520. |
[9] | Wenfei ZHAO, Xiaolei LIU, Cuiling MA, Kenan TENG. DWTA of air defense for strategic location on the sea based on multi-objective fuzzy programming [J]. Systems Engineering and Electronics, 2023, 45(3): 777-784. |
[10] | Hongzhou ZHAI, Hua ZHANG, Linna WU, Hequn BU, Kaixiang GONG. Optimization algorithm for reliability redundancy design based on collaborative balance [J]. Systems Engineering and Electronics, 2023, 45(12): 4084-4089. |
[11] | Jie HU, Fan BAO, Xiaozhu SHI. Airport gate assignment strategy based on greedy-genetic algorithm [J]. Systems Engineering and Electronics, 2023, 45(11): 3555-3564. |
[12] | Mengdie WU, Longsheng CHENG, Wenhe CHEN. Degradation trend prediction of rolling bearing based on adaptive Mahalanobis space and deep learning [J]. Systems Engineering and Electronics, 2023, 45(10): 3338-3349. |
[13] | Shiying YAN, Kefei YAN, Wei FANG, Hengyang LU. Large-scale multi-objective algorithm based on neighborhood adaptive of differential evolution [J]. Systems Engineering and Electronics, 2022, 44(7): 2112-2124. |
[14] | Qian LIU, Yunjun LU, Kebin CHEN, Mengyao HAN, Liang GUO. Combat task decomposition EVA method based on binary constraints of task subject [J]. Systems Engineering and Electronics, 2022, 44(7): 2201-2210. |
[15] | Hongyao LI, Xiaoqiang LI, Xinzhong HAN, Xueli XIE, Jianxiang XI. Cooperative object detection and recognition algorithm for multiple UAVs based on decision fusion [J]. Systems Engineering and Electronics, 2022, 44(3): 746-754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||