Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (10): 3356-3364.doi: 10.12305/j.issn.1001-506X.2024.10.13
• Sensors and Signal Processing • Previous Articles
Qianqi NIE, Minghui SHA, Yingshen ZHU
Received:2023-11-03
Online:2024-09-25
Published:2024-10-22
Contact:
Minghui SHA
CLC Number:
Qianqi NIE, Minghui SHA, Yingshen ZHU. Radar signal recognition method based on improved residual neural network[J]. Systems Engineering and Electronics, 2024, 46(10): 3356-3364.
Table 1
Parameter setting of radar signal"
| 信号类型 | 参数 | 取值范围 |
| LFM | 起始频率/GHz | [4, 5] |
| NLFM | 带宽/MHz | [30, 100] |
| BPSK | 载频/GHz | [4, 5] |
| 巴克码长度 | {7, 11, 13} | |
| QPSK | 载频/GHz | [4, 5] |
| LFM-BPSK | 基准频率/GHz | [4, 5] |
| 子脉冲带宽/MHz | {2, 3, 4, 5, 6} | |
| LFM-FSK | 基准频率/MHz | [60, 150] |
| FSK-PSK | 基准频率/MHz | [60, 150] |
| P1~P4 | 载频/MHz | [60, 150] |
| 相位控制数 | {4, 5, 6, 7, 8}(P2码取偶数) | |
| Costas | 基准频率/MHz | [60, 150] |
| 跳频序列长度 | {5, 6, 7, 10} |
| 1 | 张国柱, 黄可生, 姜文利, 等. 基于信号包络的辐射源细微特征提取方法[J]. 系统工程与电子技术, 2006, 28 (6): 795- 797. |
| ZHANG G Z , HUANG K S , JIANG W L , et al. Emitter feature extract method based on signal envelope[J]. Systems Engineering and Electronics, 2006, 28 (6): 795- 797. | |
| 2 |
YILDIRIM A . Method for estimating the central frequency of phase-coded radar signals[J]. IET Signal Processing, 2016, 10 (9): 1073- 1081.
doi: 10.1049/iet-spr.2016.0237 |
| 3 | 王国涛, 姜秋喜, 刘方正, 等. 基于频谱和瞬时自相关的雷达信号调制识别[J]. 兵器装备工程学报, 2022, 43 (1): 200- 205. |
| WANG G T , JIANG Q X , LIU F Z , et al. Radar signal modulation recognition based on spectrum and instaneous autocorrelation[J]. Journal of Ordnance Equipment Engineering, 2022, 43 (1): 200- 205. | |
| 4 | AMIN V S, ZHANG Y D, HIMED B. Improved instaneous frequency estimation of multi-component FM signals[C]//Proc. of the IEEE Radar Conference, 2019. |
| 5 |
ZHANG M , LIU L T , DIAO M . LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16 (10): 1682.
doi: 10.3390/s16101682 |
| 6 |
HELBERT S , KERISTA S , SYAHRUL H , et al. Time frequency signal classification using continuous wavelet transformation[J]. IOP Conference Series Materials Science and Engineering, 2020, 851 (1): 12045- 12051.
doi: 10.1088/1757-899X/851/1/012045 |
| 7 | QU Q Z, WANG Y L, DU Q L. Automatic modulation recognition for radar signals based on ACSE networks[C]//Proc. of the CIE International Conference on Radar, 2021: 1104-1107. |
| 8 | WANG G M, CHEN S W, HU X, et al. Radar emitter sorting and recognition based on time-frequency image union feature[C]//Proc. of the IEEE 4th International Conference on Signal and Image Processing, 2019: 165-170. |
| 9 | HAN L H , HUANG G M . Intrapulse modulation recognition of radar signals based on spectrum analysis[J]. Electronic Information Warfare Technology, 2011, 26 (3): 29- 32. |
| 10 | 孟祥豪, 赵海旭, 梁言. 一种基于对角积分双谱的复合调制LPI雷达信号识别方法[J]. 航天电子对抗, 2021, 37 (5): 13-18, 24. |
| MENG X H , ZHAO H X , LIANG Y . A compound modulated LPI radar signal recognition method based on diagonal integral bispectrum[J]. Aerospace Electronic Warfare, 2021, 37 (5): 13-18, 24. | |
| 11 | 刘赢, 田润澜, 王晓峰. 基于深层卷积神经网络和双谱特征的雷达信号识别方法[J]. 系统工程与电子技术, 2019, 41 (9): 1998- 2005. |
| LIU Y , TIAN R L , WANG X F . Radar signal recognition method based on deep convolutional neural network and bispectrum feature[J]. Systems Engineering and Electronics, 2019, 41 (9): 1998- 2005. | |
| 12 |
MI X P , CHEN X H , LIU Q , et al. Radar signals modulation recognition based on bispectrum feature processing[J]. Journal of Physics: Conference Series, 2021, 1971 (1): 12099- 12110.
doi: 10.1088/1742-6596/1971/1/012099 |
| 13 |
YUAN X Y , HE P , ZHU Q L , et al. Adversarial examples: attacks and defenses for deep learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (9): 2805- 2824.
doi: 10.1109/TNNLS.2018.2886017 |
| 14 |
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 168- 179.
doi: 10.1109/JSTSP.2018.2797022 |
| 15 | XU Z Y . Research on deep learning in natural language processing[J]. Advances in Computer and Communication, 2023, 4 (3): 196- 200. |
| 16 | HU K J , LI H Y , XU S F , et al. Nonlinear signal classification based on wavelet transform and deep belief network[J]. Journal of Physics: Conference Series, 2021, 1948 (1): 12029- 12034. |
| 17 | ZHOU Z W , HUANG G M , CHEN H Y , et al. Automatic radar waveform recognition based on deep convolutional denoising auto-encoders[J]. Circuits, Systems, and Signal Processing, 2018, 37 (9): 4043- 4048. |
| 18 | LIU L T , LI X Y . Radar signal recognition based on triplet convolutional neural network[J]. EURASIP Journal on Advances in Signal Processing, 2021, 112. |
| 19 | 杨洁, 张欢. 基于改进型AlexNet的LPI雷达信号识别[J]. 现代电子技术, 2020, 43 (5): 57- 60. |
| YANG J , ZHANG H . LPI radar signal recognition based on improved AlexNet[J]. Modern Electronics Technique, 2020, 43 (5): 57- 60. | |
| 20 | QIN X, ZHA X, HUANG J, et al. Radar waveform recognition based on deep residual network[C]//Proc. of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference, 2019: 892-896. |
| 21 | 秦鑫, 黄洁, 查雄, 等. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48 (3): 456- 462. |
| QIN X , HUANG J , ZHA X , et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48 (3): 456- 462. | |
| 22 | QU Z Y , MAO X J , DENG Z A . Radar signal intra-pulse mo-dulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6, 43874- 43884. |
| 23 | HUANG D K , YAN X P , HAO X H , et al. Low SNR multi-emitter signal sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the YOLOv5 deep learning model[J]. Sensors, 2022, 22 (20): 7783- 7805. |
| 24 | 肖易寒, 王亮, 郭玉霞. 基于去噪卷积神经网络的雷达信号调制类型识别[J]. 电子与信息学报, 2021, 43 (8): 2300- 2307. |
| XIAO Y H , WANG L , GUO Y X . Radar signal modulation type recognition based on denoising convolutional neural network[J]. Journal of Electronics and Information Technology, 2021, 43 (8): 2300- 2307. | |
| 25 | LI J , ZHANG H Q , OU J P , et al. A radar signal recognition approach via ⅡF-Net deep learning models[J]. Computational Intelligence and Neuroscience, 2020, 8858588. |
| 26 | SI W J , WAN C X , DENG Z A . An efficient deep convolutional neural network with features fusion for radar signal recognition[J]. Multimedia Tools and Applications, 2023, 82, 2871- 2885. |
| 27 | QUAN D Y , TANG Z Y , WANG X F , et al. LPI radar signal recognition based on dual-channel CNN and feature fusion[J]. Symmetry, 2022, 14 (3): 570- 582. |
| 28 | ZHANG X L , ZHANG J Z , LUO T Z , et al. Radar signal intrapulse modulation recognition based on a denoising-guided disentangled network[J]. Remote Sensing, 2022, 14 (5): 1252- 1266. |
| 29 | LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162. |
| 30 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
| [1] | Wei CAI, Xin WANG, Xinhao JIANG, Zhiyong YANG, Dong CHEN. Research on few shot target detection method based on decoupling [J]. Systems Engineering and Electronics, 2024, 46(9): 2941-2950. |
| [2] | Lei WANG, Jin ZHANG, Qiuxuan YE. Spectrum sensing method based on cyclic spectrum and residual neural network in LDACS system [J]. Systems Engineering and Electronics, 2024, 46(9): 3231-3238. |
| [3] | Xiaoxuan CHEN, Shuwen XU, Shaohai HU, Xiaole MA. Infrared and visible light image fusion based on convolution and self attention [J]. Systems Engineering and Electronics, 2024, 46(8): 2641-2649. |
| [4] | Ruibin ZHANG, Mengtao ZHU, Yunjie LI. Radar transmitting signal generation method for modulation recognition network stealth [J]. Systems Engineering and Electronics, 2024, 46(7): 2256-2268. |
| [5] | Yuming HUA, Dongya WANG, Tianlin ZHU, Sheng JIN, Yang WANG. Time-frequency harmonic wave analysis method of composite micro-Doppler signals [J]. Systems Engineering and Electronics, 2024, 46(7): 2301-2309. |
| [6] | Qianglong WANG, Xiaoguang GAO, Bicong WU, Zijian HU, Kaifang WAN. Review of research on restricted Boltzmann machine and its variants [J]. Systems Engineering and Electronics, 2024, 46(7): 2323-2345. |
| [7] | Xiantao SUN, Wangyang JIANG, Wenjie CHEN, Weihai CHEN, Yali ZHI. Object grasp pose detection based on the region of interest [J]. Systems Engineering and Electronics, 2024, 46(6): 1867-1877. |
| [8] | Xuemei CHEN, Zhiheng LIU, Suiping ZHOU, Hang YU, Yanming LIU. Road extraction from high-resolution remote sensing images based on HRNet [J]. Systems Engineering and Electronics, 2024, 46(4): 1167-1173. |
| [9] | Tianwen ZHANG, Xiaoling ZHANG, Zikang SHAO, Tianjiao ZENG. Mask attention interaction for SAR ship instance segmentation [J]. Systems Engineering and Electronics, 2024, 46(3): 831-838. |
| [10] | Ran JI, Maosen XIAO, Shuo LI, Yu LIU, Zhanyi LUO, Jiawei CHENG. Research on MRTD objective testing method based on machine learning [J]. Systems Engineering and Electronics, 2024, 46(10): 3265-3270. |
| [11] | Duanyang SHI, Qiang LIN, Bing HU, Xiaoshuai DU. Target detection method of primary surveillance radar based on YOLO [J]. Systems Engineering and Electronics, 2024, 46(1): 143-151. |
| [12] | Meng WANG, Bing ZHU. Application of uncertainty modeling in 2D and 3D object detection [J]. Systems Engineering and Electronics, 2023, 45(8): 2370-2376. |
| [13] | Lei WANG, Zhiyong ZHANG, Huiqi XU, Weigui ZENG, Silei CAO. Radar emitter identification based on VMD and multi-domain joint distribution [J]. Systems Engineering and Electronics, 2023, 45(8): 2479-2488. |
| [14] | Kai SHAO, Ziqun DU, Guangyu WANG. CSI feedback method for dynamically adjusting compression rate based on model pruning [J]. Systems Engineering and Electronics, 2023, 45(8): 2615-2622. |
| [15] | Tianshu CUI, Dong WANG, Zhen HUANG. Automatic modulation classification based on lightweight network for space cognitive communication [J]. Systems Engineering and Electronics, 2023, 45(7): 2220-2226. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||