Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (3): 575-581.doi: 10.3969/j.issn.1001-506X.2020.03.010
Previous Articles Next Articles
Yanfeng DANG1,2(), Yi LIANG1,2,*(
), Gang ZHANG1,2(
), Yujie LIANG1,2(
), Yuhong ZHANG2(
)
Received:
2019-01-08
Online:
2020-03-01
Published:
2020-02-28
Contact:
Yi LIANG
E-mail:yfdang1992@163.com;yliang@xidian.edu.cn;443734847@qq.com;liangjie05@163.com;yhzhang@xidian.edu.cn
Supported by:
CLC Number:
Yanfeng DANG, Yi LIANG, Gang ZHANG, Yujie LIANG, Yuhong ZHANG. Pulse repetition frequency design for diving highly squinted synthetic aperture radar mounted on maneuvering platform[J]. Systems Engineering and Electronics, 2020, 42(3): 575-581.
1 | JIANG S , WANG B N , XIANG M S , et al. Method for InSAR/INS navigation system based on interferogram matching[J]. IET Radar, Sonar & Navigation, 2018, 12 (9): 938- 944. |
2 | ZHONG Y M , GAO S S , LI W . A quaternion-based method for SINS/SAR integrated navigation system[J]. IEEE Trans.on Aerospace & Electronics Systems, 2012, 48 (1): 514- 524. |
3 | 别博文, 孙路, 邢孟道, 等. 基于局部直角坐标和子区域处理的弹载SAR频域成像算法[J]. 电子与信息学报, 2018, 40 (8): 6- 13. |
BIE B W , SUN L , XING M D , et al. A frequency-domain algorithm based on local cartesian coordinate and subregion processing for missile-borne SAR imaging[J]. Journal of Electronics & Information Technology, 2018, 40 (8): 6- 13. | |
4 | YANG L , ZHAO L , ZHOU S , et al. Spectrum-oriented FFBP algorithm in quasi-polar grid for SAR imaging on maneuvering platform[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 14 (5): 724- 728. |
5 | TANG S Y , ZHANG L R , GUO P , et al. Acceleration model analyses and imaging algorithm for highly squinted airborne spotlight mode SAR with maneuvers[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2015, 8 (3): 1120- 1131. |
6 |
CAMLICA S , GURBUZ A C , ARIKAN O . Autofocused spotlight SAR image reconstruction of off-grid sparse scenes[J]. IEEE Trans.on Aerospace and Electronic Systems, 2017, 53 (4): 1880- 1892.
doi: 10.1109/TAES.2017.2675138 |
7 |
LI Z Y , XING M D , LIANG Y , et al. A frequency-domain imaging algorithm for highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory[J]. IEEE Trans.on Geoscience and Remote Sensing, 2016, 54 (7): 4023- 4038.
doi: 10.1109/TGRS.2016.2535391 |
8 | DANG Y F , LIANG Y , BIE B W , et al. A range perturbation approach for correcting spatially variant range envelope in diving highly squinted SAR with nonlinear trajectory[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15 (6): 858- 862. |
9 | CHEN S , ZHANG S N , ZHAO H C . A new chirp scaling algorithm for highly squinted missile-borne SAR based on FrFT[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8 (8): 3977- 3987. |
10 |
李财品, 何明一. 地球同步轨道SAR凝视成像变脉冲重复频率技术[J]. 电子科技大学学报, 2016, 45 (6): 917- 922.
doi: 10.3969/j.issn.1001-0548.2016.06.007 |
LI C P , HE M Y . The technology of pulse repetition frequency variation for geosynchronous orbit SAR with staring imaging[J]. Journal of University of Electronic Science and Technology of China, 2016, 45 (6): 917- 922.
doi: 10.3969/j.issn.1001-0548.2016.06.007 |
|
11 |
FU R Y , ZHANG D D , SUN Y H . Research of linear charging for repetition-frequency pulse power supply[J]. IEEE Trans.on Plasma Science, 2017, 45 (7): 1585- 1590.
doi: 10.1109/TPS.2017.2706281 |
12 |
郑陶冶, 俞根苗. 弹载SAR脉冲重复频率设计研究[J]. 雷达科学与技术, 2010, 8 (3): 217- 222.
doi: 10.3969/j.issn.1672-2337.2010.03.006 |
ZHENG T Y , YU G M . Design method of pulse repetition frequency of missile-borne side-looking SAR[J]. Radar Science and Technology, 2010, 8 (3): 217- 222.
doi: 10.3969/j.issn.1672-2337.2010.03.006 |
|
13 | YIN W, YANG W F, DING Z G. Pulse repetition frequency design for geosynchronous SAR in ellipcial orbit[C]//Proc.of the IET International Radar Conference, 2015. DOI: 10.1049/cp.2015.1407. |
14 | PYNE B, RAVINDRA V. An improved pulse repetition frequency selection scheme for synthetic aperture radar[C]//Proc.of the 12th European Radar Conference, 2015: 257-260. |
15 | 谢英华, 卢再奇, 周剑雄, 等. 弹载平台聚束SAR成像脉冲重复频率设计[J]. 系统工程与电子技术, 2010, 32 (11): 2294- 2298. |
XIE Y H , LU Z Q , ZHOU J X , et al. Design of pulse repetition frequency for missile-borne spotlight SAR imaging[J]. Systems Engineering and Electronics, 2010, 32 (11): 2294- 2298. | |
16 | LI Y C , DENG H , QUAN Y H , et al. Sequence design for high squint spotlight SAR imaging on manoeuvring descending trajectory[J]. IET Radar, Sonar & Navigation, 2017, 11 (2): 219- 225. |
17 | 党彦锋, 梁毅, 别博文, 等. 俯冲段大斜视SAR子孔径成像二维空变校正方法[J]. 电子与信息学报, 2018, 40 (11): 2621- 2629. |
DANG Y F , LIANG Y , BIE B W , et al. Two-dimension space-variance correction approach for diving highly squinted SAR imaging with sub-aperture[J]. Journal of Electronics & Information Technology, 2018, 40 (11): 2621- 2629. | |
18 | 李震宇, 梁毅, 邢孟道, 等. 一种俯冲段子孔径SAR大斜视成像及几何校正方法[J]. 电子与信息学报, 2015, 37 (8): 1814- 1820. |
LI Z Y , LIANG Y , XING M D , et al. New subaperture imaging algorithm and geometric correction method for high squint diving SAR based on equivalent squint model[J]. Journal of Electronics & Information Technology, 2015, 37 (8): 1814- 1820. | |
19 |
BIE B W , XING M D , XIA X G , et al. A frequency domain backprojection algorithm based on local cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (12): 7086- 7101.
doi: 10.1109/TGRS.2018.2848249 |
20 |
TORRES Y , PREMARATNE K , AMELUNG F , et al. An efficient polyphase filter-based resampling method for unifying the PRFs in SAR data[J]. IEEE Trans.on Geoscience and Remote Sensing, 2017, 55 (10): 5741- 5754.
doi: 10.1109/TGRS.2017.2713600 |
21 | SHU Y X , LIAO G S , YANG Z W . Design considerations of PRF for optimizing GMTI performance in azimuth multichannel SAR systems with HRWS imaging capability[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 52 (4): 2048- 2063. |
22 | WU Y M , YU Z , XIAO P , et al. Suppression of azimuth ambiguities in spaceborne SAR images using spectral selection and extrapolation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2018, 56 (10): 6134- 6147. |
23 | LIN M, YU Z, LI C S. Azimuth ambiguity suppression for spaceborne SAR based on PRF micro-variation[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2015: 1325-1328. |
24 |
XU W , HUANG P P , ROBERT W , et al. Processing of multichannel sliding spotlight and TOPS synthetic aperture radar data[J]. IEEE Trans.on Geoscience and Remote Sensing, 2013, 51 (8): 4417- 4429.
doi: 10.1109/TGRS.2013.2265306 |
25 |
ZENG T , LI Y H , DING Z G , et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (12): 6718- 6734.
doi: 10.1109/TGRS.2015.2447393 |
26 |
WANG C H , XU J W , LIAO G S , et al. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11 (2): 336- 346.
doi: 10.1109/JSTSP.2016.2605064 |
27 | KRIERER G, HUBER S, VILLANO M, et al. CEBRAS: cross elevation beam range ambiguity suppression for high-resolution wide-swath and MIMO-SAR imaging[C]//Proc.of the IEEE International Geoscience and Remote Sensing Symposium, 2015: 196-199. |
28 |
VILLANO M , KRIERER G , MOREIRA A . Nadir echo removal in synthetic aperture radar via waveform diversity and dual-focus post processing[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (5): 719- 723.
doi: 10.1109/LGRS.2018.2808196 |
29 |
YANG M D , ZHU D Y . Efficient space-variant motion compensation approach for ultra-high-resolution SAR based on subswath processing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (6): 2090- 2103.
doi: 10.1109/JSTARS.2018.2799601 |
[1] | Tian MIAO, Hongcheng ZENG, He WANG, Jie CHEN. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data [J]. Systems Engineering and Electronics, 2022, 44(9): 2760-2768. |
[2] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[3] | Dongning FU, Guisheng LIAO, Yan HUANG, Bangjie ZHANG, Xing WANG. Time-varying narrow-band interference suppression algorithm for SAR based on graph Laplacian embedding [J]. Systems Engineering and Electronics, 2022, 44(6): 1846-1853. |
[4] | Minghui GAI, Su ZHANG, Weitian SUN, Yude NI, Lei YANG. Structural-feature enhancement of SAR targets based on complex value compatible total variation [J]. Systems Engineering and Electronics, 2022, 44(6): 1862-1872. |
[5] | Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method [J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511. |
[6] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[7] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
[8] | Junjie WANG, Dejun FENG, Weidong HU. Two-dimensional SAR image modulation method based on time-varying materials [J]. Systems Engineering and Electronics, 2022, 44(2): 455-462. |
[9] | Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking [J]. Systems Engineering and Electronics, 2022, 44(2): 470-479. |
[10] | Yu LEI, Xiangguang LENG, Xiaoyan ZHOU, Zhongzhen SUN, Kefeng JI. Recognition method of ship target in complex SAR image based on improved ResNet network [J]. Systems Engineering and Electronics, 2022, 44(12): 3652-3660. |
[11] | Xiaoya JIA, Hongqiao WANG, Yadan YANG, Zhongma CUI, Bin XIONG. Anchor free SAR image ship target detection method based on the YOLO framework [J]. Systems Engineering and Electronics, 2022, 44(12): 3703-3709. |
[12] | Zheng XU, Guangzhong GONG, Yunhua LUO, Guangde LI. Application of improved spatial variant apodization algorithm through constrained optimization in sidelobe suppression [J]. Systems Engineering and Electronics, 2022, 44(11): 3298-3304. |
[13] | Baoping YANG, Maogang WEI, Zhichao BAO, Linsen YANG, Xiaoyu WANG. Comparative analysis of common coherent jamming technology against SAR [J]. Systems Engineering and Electronics, 2022, 44(11): 3397-3402. |
[14] | Guang SUN, Shiqi XING, Datong HUANG, Yongzhen LI, Xuesong WANG. Jamming method of intermittent sampling against SAR-GMTI based on noise multiplication modulation [J]. Systems Engineering and Electronics, 2022, 44(10): 3059-3071. |
[15] | Yonggang LI, Weigang ZHU, Qiongnan HUANG, Yuntao LI, Yonghua HE. Near-shore ship target detection with SAR images in complex background [J]. Systems Engineering and Electronics, 2022, 44(10): 3096-3103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||