Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (11): 3298-3304.doi: 10.12305/j.issn.1001-506X.2022.11.02
• Electronic Technology • Previous Articles Next Articles
Zheng XU1, Guangzhong GONG1,2, Yunhua LUO1,*, Guangde LI3
Received:
2021-04-15
Online:
2022-10-26
Published:
2022-10-29
Contact:
Yunhua LUO
CLC Number:
Zheng XU, Guangzhong GONG, Yunhua LUO, Guangde LI. Application of improved spatial variant apodization algorithm through constrained optimization in sidelobe suppression[J]. Systems Engineering and Electronics, 2022, 44(11): 3298-3304.
Table 1
Comparison of main lobe energy after sidelobe suppression by different algorithms"
目标间距/m | 原始回波 | MSVA | 本文算法 | 相对于MSVA能量提升比例/% |
0.35 | 1 | 0.307 0 | 0.911 0 | 196.74 |
0.5 | 1 | 0.653 5 | 0.778 1 | 19.07 |
0.8 | 1 | 0.811 0 | 0.900 7 | 11.06 |
1.0 | 1 | 0.920 7 | 0.972 7 | 5.64 |
1.5 | 1 | 0.948 0 | 0.977 9 | 3.15 |
3.0 | 1 | 0.976 2 | 0.991 8 | 1.60 |
1 | 杨龙, 苏娟, 李响. 基于深度卷积神经网络的SAR舰船目标检测[J]. 系统工程与电子技术, 2019, 41 (9): 1990- 1997. |
YANG L , SU J , LI X . SAR ship target detection based on deep convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41 (9): 1990- 1997. | |
2 | 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9 (1): 1- 33. |
DENG Y K , YU W D , ZHANG H , et al. Future development trend of spaceborne SAR technology[J]. Journal of Radars, 2020, 9 (1): 1- 33. | |
3 | 黄寅礼, 孙路, 郭亮, 等. 基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船检测算法[J]. 雷达学报, 2020, 9 (2): 335- 342. |
HUANG Y L , SUN L , GUO L , et al. Ship detection algorithm based on spatial apodization filter sidelobe suppression and ordered statistics constant false alarm rate[J]. Journal of Radars, 2020, 9 (2): 335- 342. | |
4 |
CHEN G , WANG J . Target detection method in passive bistatic radar[J]. Journal of Systems Engineering and Electronics, 2020, 31 (3): 510- 519.
doi: 10.23919/JSEE.2020.000021 |
5 | 赵宜楠, 宋群, 冯翔, 等. 基于模糊函数构型的动目标探测波形设计[J]. 系统工程与电子技术, 2020, 42 (2): 263- 270. |
ZHAO Y N , SONG Q , FENG X , et al. Waveform design of moving target detection based on ambiguity function configuration[J]. Systems Engineering and Electronics, 2020, 42 (2): 263- 270. | |
6 | 毛春燕. SAR图像旁瓣抑制技术研究[D]. 上海: 上海交通大学, 2019. |
MAO C Y. Research on SAR image sidelobe suppression technology[D]. Shanghai: Shanghai Jiaotong University, 2019. | |
7 |
ZHU X X , FENG H , FAN Y , et al. Sidelobe suppression with resolution maintenance for SAR images via sparse representation[J]. Sensors, 2018, 18 (5): 1589.
doi: 10.3390/s18051589 |
8 |
ZHANG L , CHENG Y C . Imaging algorithm of multi-ship motion target based on compressed sensing[J]. Journal of Systems Engineering and Electronics, 2016, 27 (4): 790- 796.
doi: 10.21629/JSEE.2016.04.07 |
9 | HOGBOM J A . Aperture synthesis with a non-regular distribution of interferometer baselines[J]. Astronomy and Astrophysics Supplement Series, 1974, 15, 417- 426. |
10 | TSAO J , STEINBERG B D . Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique[J]. IEEE Trans.on Antennas & Propagation, 1988, 36 (4): 543- 556. |
11 | 黄小红, 邱兆坤, 许人灿. 空间轨道目标ISAR成像方法[J]. 数据采集与处理, 2005, 20 (2): 203- 207. |
HUANG X H , QIU Z K , XU R C . ISAR imaging of space object in orbit[J]. Journal of Data Acquisition & Processing, 2005, 20 (2): 203- 207. | |
12 | 林清源, 王彦平, 洪文. 一种基于CLEAN的SAR图像旁瓣抑制方法[J]. 中国科学院研究生院学报, 2011, 28 (3): 355- 360. |
LIN Q Y , WANG Y P , HONG W . A CLEAN-based SAR image sidelobe suppression method[J]. Journal of the University of Chinese Academy of Sciences, 2011, 28 (3): 355- 359. | |
13 | JUN S , YANG L , XIAO L Z , et al. A novel SAR sidelobe suppression method via dual-delta factorization[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12 (7): 1576- 1580. |
14 | ABERGEL R J , DENIS L , LADJAL S , et al. Subpixellic methods for sidelobes suppression and strong targets extraction in single look complex SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018, (3): 1- 18. |
15 | WANG Y P , ZHANG Q M , LIN Y , et al. Multi-phase-center sidelobe suppression method for circular GBSAR based on sparse spectrum[J]. IEEE Access, 2020, 8, 133802- 133816. |
16 | STANKWITZ H C , DALLAIRE R J , FIENUP J R . Nonlinear apodization for sidelobe control in SAR imagery[J]. IEEE Trans.on Aerospace & Electronic Systems, 1995, 31 (1): 267- 279. |
17 | XU Z H , LI H C , SHI Q , et al. Effect analysis and spectral weighting optimization of sidelobe reduction on SAR image understanding[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (9): 3434- 3444. |
18 | SMITH B H . Generalization of spatially variant apodization to noninteger Nyquist sampling rates[J]. IEEE Trans.on Image Processing, 2000, 9 (6): 1088- 1093. |
19 | XU X , NARAYANAN R M . Enhanced resolution in SAR/ISAR imaging using iterative sidelobe apodization[J]. IEEE Trans.on Image Processing, 2005, 14 (4): 537- 547. |
20 | GUO L , YIN H F , ZHOU Y , et al. A novel sidelobe-suppression algorithm for airborne synthetic aperture imaging radar[J]. Optics & Laser Technology, 2019, 111, 714- 719. |
21 | CASTILLO R C , LLORENTE R S , BURGOS G M . Robust SVA method for every sampling rate condition[J]. IEEE Trans.on Aerospace & Electronic Systems, 2007, 43 (2): 571- 580. |
22 | HUAN R H , TAO Y F , CHEN Y , et al. SAR image sidelobe suppression method based on wavelet transform and spatial variant apodization[J]. Journal of Data Acquisition and Processing, 2019, (3): 190- 197. |
23 | MIN L , LI Z , LIU L . A novel sidelobe reduction algorithm based on two-dimensional sidelobe correction using D-SVA for squint SAR images[J]. Sensors, 2018, 18 (3): 783- 797. |
24 | NI C , WANG Y F , XU X H , et al. A SAR sidelobe suppression algorithm based on modified spatially variant apodization[J]. Science in China (Technological Sciences), 2010, 53 (9): 2542- 2551. |
25 | 倪崇. 合成孔径雷达旁瓣抑制方法研究[D]. 北京: 中国科学院研究生院, 2011. |
NI C. Research on sidelobe suppression method of synthetic aperture radar[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2011. | |
26 | YUAN S , YU Z , LI C S , et al. A novel SAR Sidelobe suppression method based on CNN[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (1): 132- 136. |
27 | XIONG T , WANG S , HOU B , et al. A resample-based SVA algorithm for sidelobe reduction of SAR/ISAR imagery with noninteger Nyquist sampling rate[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (2): 1016- 1028. |
28 | YANG K , LIAO G S , XU Q , et al. Improved SVA method for SAR sidelobe suppression[J]. Chinese Journal of Radio Science, 2012, 27 (6): 1158- 1165. |
29 | 武玉娟. 高分辨SAR成像算法的FPGA实现及SAR图像增强研究[D]. 西安: 西安电子科技大学, 2020. |
WU Y J. FPGA implementation of high-resolution SAR imaging algorithm and research on SAR image enhancement[D]. Xi'an: Xidian University, 2020. | |
30 | JUNG C H, KWAG Y K. PSLR Estimation considering clutter background from SAR image data[C]//Proc. of the IEEE International Geoscience & Remote Sensing Symposium, 2009. |
[1] | Tian MIAO, Hongcheng ZENG, He WANG, Jie CHEN. A fast extraction method of flood areas based on iterative threshold segmentation using spaceborne SAR data [J]. Systems Engineering and Electronics, 2022, 44(9): 2760-2768. |
[2] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[3] | Dongning FU, Guisheng LIAO, Yan HUANG, Bangjie ZHANG, Xing WANG. Time-varying narrow-band interference suppression algorithm for SAR based on graph Laplacian embedding [J]. Systems Engineering and Electronics, 2022, 44(6): 1846-1853. |
[4] | Minghui GAI, Su ZHANG, Weitian SUN, Yude NI, Lei YANG. Structural-feature enhancement of SAR targets based on complex value compatible total variation [J]. Systems Engineering and Electronics, 2022, 44(6): 1862-1872. |
[5] | Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method [J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511. |
[6] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[7] | Lei YANG, Su ZHANG, Minghui GAI, Cheng FANG. High-resolution SAR imagery with enhancement of directional structure feature [J]. Systems Engineering and Electronics, 2022, 44(3): 808-818. |
[8] | Junjie WANG, Dejun FENG, Weidong HU. Two-dimensional SAR image modulation method based on time-varying materials [J]. Systems Engineering and Electronics, 2022, 44(2): 455-462. |
[9] | Cheng FANG, Huijuan LI, Wen LU, Yumeng SONG, Lei YANG. Multi-feature enhancement algorithm for high resolution SAR based on morphological auto-blocking [J]. Systems Engineering and Electronics, 2022, 44(2): 470-479. |
[10] | Yu LEI, Xiangguang LENG, Xiaoyan ZHOU, Zhongzhen SUN, Kefeng JI. Recognition method of ship target in complex SAR image based on improved ResNet network [J]. Systems Engineering and Electronics, 2022, 44(12): 3652-3660. |
[11] | Xiaoya JIA, Hongqiao WANG, Yadan YANG, Zhongma CUI, Bin XIONG. Anchor free SAR image ship target detection method based on the YOLO framework [J]. Systems Engineering and Electronics, 2022, 44(12): 3703-3709. |
[12] | Baoping YANG, Maogang WEI, Zhichao BAO, Linsen YANG, Xiaoyu WANG. Comparative analysis of common coherent jamming technology against SAR [J]. Systems Engineering and Electronics, 2022, 44(11): 3397-3402. |
[13] | Guang SUN, Shiqi XING, Datong HUANG, Yongzhen LI, Xuesong WANG. Jamming method of intermittent sampling against SAR-GMTI based on noise multiplication modulation [J]. Systems Engineering and Electronics, 2022, 44(10): 3059-3071. |
[14] | Yonggang LI, Weigang ZHU, Qiongnan HUANG, Yuntao LI, Yonghua HE. Near-shore ship target detection with SAR images in complex background [J]. Systems Engineering and Electronics, 2022, 44(10): 3096-3103. |
[15] | Shichao XIONG, Jiacheng NI, Qun ZHANG, Ying LUO. High-squint mode SAR GMTIm based on ωk algorithm with spectrum rotation [J]. Systems Engineering and Electronics, 2022, 44(10): 3104-3114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||