Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (12): 4054-4061.doi: 10.12305/j.issn.1001-506X.2024.12.14
• Sensors and Signal Processing • Previous Articles
Shuai FENG1,*, Ruru CAO2, Yuzhao MA2, Chao DING2
Received:
2023-09-25
Online:
2024-11-25
Published:
2024-12-30
Contact:
Shuai FENG
CLC Number:
Shuai FENG, Ruru CAO, Yuzhao MA, Chao DING. Lidar denoising algorithm of improved CEEMDAN combined with novel wavelet change[J]. Systems Engineering and Electronics, 2024, 46(12): 4054-4061.
Table 1
Comparison of different algorithms denoising effect"
去噪算法 | 噪声强度/dB | |||||||
5 | 0 | -5 | ||||||
SNR/dB | RMSE(×10-4) | SNR/dB | RMSE(×10-4) | SNR/dB | RMSE(×10-4) | |||
小波硬阈值 | 19.879 3 | 0.067 0 | 17.426 8 | 0.144 9 | 16.811 6 | 0.456 4 | ||
小波软阈值 | 20.091 5 | 0.059 4 | 19.760 2 | 0.173 9 | 18.804 0 | 0.140 6 | ||
改进小波阈值 | 25.041 6 | 0.026 9 | 24.964 9 | 0.032 4 | 23.245 9 | 0.121 2 |
Table 3
Comparison of denoising algorithms with different noise"
去噪算法 | 噪声强度/dB | ||||||||||
20 | 5 | 0 | -10 | ||||||||
SNR/dB | RMSE(×10-4) | SNR/dB | RMSE(×10-4) | SNR/dB | RMSE(×10-4) | SNR/dB | RMSE(×10-4) | ||||
算法1 | 13.360 6 | 0.098 1 | 12.536 1 | 0.750 1 | 12.386 3 | 0.564 8 | 12.958 0 | 1.620 0 | |||
算法2 | 13.621 5 | 0.131 2 | 13.831 7 | 0.229 8 | 12.881 0 | 0.257 1 | 13.742 7 | 1.187 1 | |||
算法3 | 19.126 3 | 0.031 6 | 17.275 4 | 0.264 5 | 17.674 6 | 0.270 5 | 17.781 3 | 0.406 1 | |||
算法4 | 20.660 4 | 0.022 0 | 19.935 0 | 0.081 8 | 19.093 6 | 0.160 7 | 20.756 9 | 5.113 0 | |||
算法5 | 22.108 3 | 0.013 1 | 21.343 3 | 0.025 9 | 20.525 5 | 0.171 1 | 20.578 8 | 0.374 8 | |||
算法6 | 23.385 7 | 0.012 5 | 24.058 3 | 0.017 2 | 24.323 3 | 0.088 6 | 24.511 1 | 0.179 4 |
1 |
MAO J D . Noise reduction for lidar returns using local threshold wavelet analysis[J]. Optical and Quantum Electronics, 2012, 43, 59- 68.
doi: 10.1007/s11082-011-9503-6 |
2 |
XIE C B , ZHAO M , WANG B X . Study of the scanning lidar on the atmospheric detection[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 150, 114- 120.
doi: 10.1016/j.jqsrt.2014.08.023 |
3 |
JIAO J , YANG G T , WANG J H . Initial multi-parameter detection of atmospheric metal layers by Beijing Na-K lidar[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188, 46- 51.
doi: 10.1016/j.jqsrt.2016.05.018 |
4 |
KONG Z , MA T , CHENG Y , et al. A polarization-sensitive imaging lidar for atmospheric remote sensing[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 271, 107747.
doi: 10.1016/j.jqsrt.2021.107747 |
5 |
VISHNU R , KUMAR Y B , NAIR A K M . An investigation of the elevated aerosol layer using a polarization lidar over a tropical rural site in India[J]. Boundary-Layer Meteorology, 2021, 178 (2): 323- 340.
doi: 10.1007/s10546-020-00573-2 |
6 | 孙宸, 胡嘉龙, 王昆, 等. 基于小波变换的激光雷达回波信号去噪方法研究[J]. 雷达与对抗, 2022, 42 (4): 20-22, 57. |
SUN C , HU J L , WANG K , et al. Research on a denoising method of lidar echo signals based on wavelet transform[J]. Radar and ECM, 2022, 42 (4): 20-22, 57. | |
7 | 邢国军, 刘梧林. 未知环境下激光雷达非平稳数据隔离方法[J]. 现代雷达, 2023, 45 (8): 74- 82. |
XING G J , LIU W L . Nonstationary data isolation method of lidar in unknown environment[J]. Modern Radar, 2023, 45 (8): 74- 82. | |
8 |
HU M H , MAO J D , LI J , et al. A novel lidar signal denoising method based on convolutional autoencoding deep learning neural network[J]. Atmosphere, 2021, 12 (11): 1403.
doi: 10.3390/atmos12111403 |
9 |
TIAN P F , CAO X J , LIANG J N , et al. Improved empirical mode decomposition based denoising method for lidar signals[J]. Optics Communications, 2014, 325, 54- 59.
doi: 10.1016/j.optcom.2014.03.083 |
10 |
JI S , CAO N W , YANG S P , et al. Inversion of aerosol extinction coefficient by Raman-Mie scattering lidar[J]. Optik, 2020, 203, 164038.
doi: 10.1016/j.ijleo.2019.164038 |
11 |
ZHANG Y J , WU T , ZHANG X A , et al. Rayleigh lidar signal denoising method combined with WT, EEMD and LOWESS to improve retrieval accuracy[J]. Remote Sensing, 2022, 14 (14): 3270.
doi: 10.3390/rs14143270 |
12 |
WANG Z Z , DING H B , WANG B X , et al. New denoising method for lidar signal by the WT-VMD joint algorithm[J]. Sensors, 2022, 22 (16): 5978.
doi: 10.3390/s22165978 |
13 |
QI B L , YANG G H , GUO D B , et al. EMD and VMD-GWO parallel optimization algorithm to overcome lidar ranging limitations[J]. Optics Express, 2021, 29 (2): 2855- 2873.
doi: 10.1364/OE.415287 |
14 | WU C , XING W G , XIA L H , et al. Improvement of detection performance on single photon lidar by EMD-based denoising method[J]. Original Research Article, 2019, 181, 760- 767. |
15 | 叶莉华, 李秋生, 卢清. 基于EEMD与多重分形的心电信号特征提取与分类[J]. 信号处理, 2023, 39 (1): 143- 153. |
YE L H , LI Q S , LU Q . Feature extraction and classification of ECG signals based on EEMD and multifractal[J]. Journal of Signal Processing, 2023, 39 (1): 143- 153. | |
16 | CHENG X , MAO J D , LI J , et al. An EEMD-SVD-LWT algorithm for denoising a lidar signal[J]. Measurement, 2020, 168, 108405. |
17 | GU L , FEI Z W , XU X B . Enhancement method of weak lidar signal based on adaptive variational modal decomposition and wavelet threshold denoising[J]. Infrared Physics & Technology, 2022, 120, 103991. |
18 | 杨瑞, 李维勤, 白清, 等. CEEMDAN-WT降噪提升BOTDA信噪比研究[J]. 电子测量与仪器学报, 2022, 36 (12): 28- 36. |
YANG R , LI W Q , BAI Q , et al. Signal-to-noise ratio improvement for BOTDA using CEEMDAN-WT method[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36 (12): 28- 36. | |
19 | 郭晓菲, 欧同庚, 马武刚, 等. 基于CEEMDAN和小波变换的地震信号随机噪声压制新方法[J]. 大地测量与地球动力学, 2022, 42 (11): 1202-1206, 1210. |
GUO X F , OU T G , MA W G , et al. A new random attenuation method of seismic signal Based on CEEMDAN and wavelet transform[J]. Journal of Geodesy and Geodynamics, 2022, 42 (11): 1202-1206, 1210. | |
20 | HU Y J , OUYANG Y , WANG Z L , et al. Vibration signal denoising method based on CEEMDAN and its application in brake disc unbalance detection[J]. Mechanical Systems and Signal Processing, 2022, 187, 109972. |
21 |
马愈昭, 刘逵, 张岩峰, 等. CEEMD结合改进小波阈值的激光雷达信号去噪算法[J]. 系统工程与电子技术, 2023, 45 (1): 93- 100.
doi: 10.12305/j.issn.1001-506X.2023.01.12 |
MA Y Z , LIU K , ZHANG Y F , et al. Laser radar signal denoising algorithm based on CEEMD combined with improved wavelet threshold[J]. Systems Engineering and Electronics, 2023, 45 (1): 93- 100.
doi: 10.12305/j.issn.1001-506X.2023.01.12 |
|
22 | YANG Y , LI S S , LI C , et al. Research on ultrasonic signal processing algorithm based on CEEMDAN joint wavelet packet thresholding[J]. Measurement, 2021, 201, 111751. |
23 |
HUANG N E , ZHENG S , LONG S R , et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454 (1971): 903- 995.
doi: 10.1098/rspa.1998.0193 |
24 |
WU Z H , HUANG N E . Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1 (1): 1- 41.
doi: 10.1142/S1793536909000047 |
25 |
MERT A , AKAN A . Detrended fluctuation thresholding for empirical mode decomposition based denoising[J]. Digital Signal Processing, 2014, 32, 48- 56.
doi: 10.1016/j.dsp.2014.06.006 |
26 |
MOGHTADERI A , FLANDRIN P , BORGNAT P . Trend filtering via empirical mode decompositions[J]. Computational Statistics and Data Analysis, 2013, 58, 114- 126.
doi: 10.1016/j.csda.2011.05.015 |
27 | PENG C K , HAVLIN S , STANLEY H E , et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1995, 5 (1): 81- 87. |
28 | HUANG M, LIU Y Y, YANG G L, et al. An innovation based DFA and EMD method for denoising fiber optic gyroscope drift signal[C]//Proc. of the IEEE 3rd International Conference on Information Science and Control Engineering, 2016: 1262-1266. |
29 |
CUI H M , ZHAO R M , HOU Y L . Improved threshold denoising method based on wavelet transform[J]. Physics Procedia, 2012, 33, 1354- 1359.
doi: 10.1016/j.phpro.2012.05.222 |
30 |
GONG J . A study on wavelet selection in power signal denoising[J]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 675 (1): 012104.
doi: 10.1088/1755-1315/675/1/012104 |
31 |
XIE B , XIONG Z Q , WANG Z J , et al. Gamma spectrum denoising method based on improved wavelet threshold[J]. Nuclear Engineering and Technology, 2020, 52 (8): 1771- 1776.
doi: 10.1016/j.net.2020.01.025 |
[1] | Zhian DENG, Zhiguo WANG, Sheng'ao WANG, Weijian SI. Radar signal modulation recognition method based on synchro-extracting transform denoising [J]. Systems Engineering and Electronics, 2024, 46(10): 3334-3346. |
[2] | Shuang CONG, Yongqin WANG. From laser ranging to quantum entangled photon pair ranging [J]. Systems Engineering and Electronics, 2023, 45(6): 1772-1783. |
[3] | Yonghua ZENG, Junyao MA, Chaoyan HUANG, Zhihui MAO, Tingting WU. Color image denoising method combining prue quaternion and dictionary learning [J]. Systems Engineering and Electronics, 2023, 45(2): 373-378. |
[4] | Yuzhao MA, Kui LIU, Yanfeng ZHANG, Shuai FENG, Xinglong XIONG. Laser radar signal denoising algorithm based on CEEMD combined with improved wavelet threshold [J]. Systems Engineering and Electronics, 2023, 45(1): 93-100. |
[5] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
[6] | Pengyu CAO, Chengzhi YANG, Limeng SHI, Hongchao WU. LPI radar signal enhancement based on DAE-GAN network [J]. Systems Engineering and Electronics, 2021, 43(9): 2493-2500. |
[7] | Kai SHAO, Liancheng CHEN, Yin LIU. Learning and estimation of high mobility Jakes channel [J]. Systems Engineering and Electronics, 2021, 43(4): 1119-1125. |
[8] | Pei LIU, Jian JIA, Li CHEN, Ying AN. Image denoising algorithm based on boosting high order non-convex total variation model [J]. Systems Engineering and Electronics, 2020, 42(3): 557-567. |
[9] | Yuzhao MA, Nan CHEN, Xinglong XIONG. Wind shear warning algorithm based on PCA and phase difference correction [J]. Systems Engineering and Electronics, 2020, 42(1): 52-60. |
[10] | WANG Caiyun, ZHAO Huanyue, WANG Jianing, LI Xiaofei, HUANG Panpan. SAR image denoising via fast weighted nuclear norm minimization [J]. Systems Engineering and Electronics, 2019, 41(7): 1504-1508. |
[11] | CHEN Haiyan, DU Jinghan, ZHANG Weining. Monitoring data repairing method based on deep denoising auto-encoder network [J]. Systems Engineering and Electronics, 2018, 40(2): 435-440. |
[12] | HUANG Yingkun, JIN Weidong, YU Zhibin, WU Yunpu. Radar emitter signal recognition based on deep learning and ensemble learning [J]. Systems Engineering and Electronics, 2018, 40(11): 2420-. |
[13] | WANG Caiyun, HU Yunkan, WU Shuxia. Shearlet domain SAR image denoising method based on Bayesian model [J]. Systems Engineering and Electronics, 2017, 39(6): 1250-1255. |
[14] | LU Zhizhong, ZHOU Ying, HUANG Yu. Research on correlation in spatial domain to eliminate the co-channel interference of the X-band marine radar [J]. Systems Engineering and Electronics, 2017, 39(4): 758-767. |
[15] | REN Jun, HU Xiaofeng, ZHU Feng. Effectiveness prediction of weapon equipment systemofsystems based on deep learning feature transfer#br# [J]. Systems Engineering and Electronics, 2017, 39(12): 2745-2749. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||