Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (6): 1772-1783.doi: 10.12305/j.issn.1001-506X.2023.06.21
• Guidance, Navigation and Control • Previous Articles
Shuang CONG, Yongqin WANG
Received:
2021-08-03
Online:
2023-05-25
Published:
2023-06-01
Contact:
Shuang CONG
CLC Number:
Shuang CONG, Yongqin WANG. From laser ranging to quantum entangled photon pair ranging[J]. Systems Engineering and Electronics, 2023, 45(6): 1772-1783.
1 |
GOODWIN F E . A Review of operational laser communication systems[J]. Proceedings of the IEEE, 1970, 58 (10): 1746- 1752.
doi: 10.1109/PROC.1970.7998 |
2 | 汪海伦, 丛爽, 尚伟伟, 等. 量子导航定位系统中光学信号传输系统设计[J]. 量子电子学报, 2018, 35 (6): 714- 722. |
WANG H L , CONG S , SHANG W W , et al. Design of optical signal transmission system in quantum navigation and positioning system[J]. Chinese Journal of Quantum Electronics, 2018, 35 (6): 714- 722. | |
3 | WANG L J, ZHAO H C, XIONG G, et al. Adaptive beamforming with coherent interference for GPS receivers[C]//Proc. of the ICMMT 4th International Conference on Microwave and Millimeter Wave Technology, 2004: 622-626. |
4 |
NEIL A . Relativity in the global positioning system[J]. Living Reviews in Relativity, 2003, 6, 1.
doi: 10.12942/lrr-2003-1 |
5 | 丛爽, 陈鼎, 宋媛媛, 等. 一种基于三颗量子卫星的定位与导航方法及系统[P]. 中国: ZL201711465970.9, 2020.2.18. |
CONG S, CHEN D, SONG Y Y, et al. A positioning and navigation method and system based on three quantum satellites[P]. China: ZL201711465970.9, 2020.2.18. | |
6 | 龙明亮, 张海峰, 邓华荣, 等. 距离千米级双望远镜的空间碎片激光测距[J]. 光学学报, 2020, 40 (2): 192- 199. |
LONG M L , ZHANG H F , DENG H R , et al. Laser ranging for space debris using double telescopes with kilometer-level distance[J]. Acta Uptica Sinica, 2020, 40 (2): 192- 199. | |
7 | XIAO J J , FANG C , HAN X C , et al. Distance ranging based on quantum entanglement[J]. Chinese Physics Letters, 2013, 30 (10): 1423- 1434. |
8 |
HE H Y , SUN J F , LU Z Y , et al. Phase-shift laser range finder technique based on optical carrier phase modulation[J]. Applied Optics, 2020, 59 (17): 5079- 5085.
doi: 10.1364/AO.387196 |
9 | SADOVNÍKOV M A, CHUBYKIN A A, SHARGORODSKIY V D. New one-way and two-way precision radio-laser ranging systems to increase the accuracy of global space geodesy and na-vigation systems[C]//Proc. of the International Conference on Laser Optics, 2016. |
10 | SHU X, LIU B, LIAO S. Research on laser ranging technology based on chaotic pulse position modulation[C]//Proc. of the 6th Symposium on Novel Optoelectronic Detection Technology and Applications, 2020. |
11 | LI Z Y , ZHANG Y B , LIU H Q . Laser time synchronization[J]. Journal of Astronautic Metrology and Measurement, 1987, 1, 52- 57. |
12 | 李语强, 伏红林, 李荣旺, 等. 云南天文台月球激光测距研究与实验[J]. 中国激光, 2019, 46 (1): 188- 195. |
LI Y Q , FU H L , LI R W , et al. Research and experiment of lunar ranging in Yunnan observatories[J]. Chinese Journal of Lasers, 2019, 46 (1): 188- 195. | |
13 |
WAGNER W , ULLRICH A , DUCIC V , et al. Gaussian decomposition and calibration of a novel small-footprintfull-waveform digitizing airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60 (2): 100- 112.
doi: 10.1016/j.isprsjprs.2005.12.001 |
14 |
LIM H . Constant fraction discriminator involving automatic gain control to reduce time walk[J]. IEEE Trans.on Nuclear Science, 2014, 61 (4): 2351- 2356.
doi: 10.1109/TNS.2014.2339362 |
15 |
YANG J Q , LIU X L , GU G H , et al. A double threshold correction method for walk error in pulsed laser ranging system[J]. Infrared Physics and Technology, 2019, 100, 28- 36.
doi: 10.1016/j.infrared.2019.03.023 |
16 |
KURTTI S , KOSTAMOVAARA J . An integrated laser radar receiver channel utilizing a timing-domain walk compensation scheme[J]. Instrumentation and Measurement, 2011, 60 (1): 146- 157.
doi: 10.1109/TIM.2010.2047663 |
17 |
SAMI K , JUSSI-PEKKA J , JUHA K . A CMOS receiver-TDC chip set for accurate pulsed TOF laser ranging[J]. IEEE Trans.on Instrumentation and Measurement, 2020, 69 (5): 2208- 2217.
doi: 10.1109/TIM.2019.2918372 |
18 |
KALISZ J . Review of methods for time interval measurements with picosecond resolution[J]. Metrologia, 2004, 41 (1): 17- 32.
doi: 10.1088/0026-1394/41/1/004 |
19 | PENG M X, XIONG H L, GONG S, et al. Error elimination method for TOA based wireless cooperative localization networks in NLOS Case[C]//Proc. of the IEEE 4th International Conference on Computer and Communications, 2018: 758-762. |
20 |
KALISZJ , PELKA R , PONIECKI A . Precision time counter for laser ranging to satellites[J]. Review of Scientific Instruments, 1994, 65 (3): 736- 741.
doi: 10.1063/1.1145094 |
21 |
SWANNB K , BLALOCK B J , CLONTS L G , et al. A 100-ps time-resolution CMOS time-to-digital converter for positron emission to mography imaging applications[J]. IEEE Journal of Solid-State Circuits, 2004, 39 (11): 1839- 1852.
doi: 10.1109/JSSC.2004.835832 |
22 |
CHEN J G , LIU Q W , HE Z Y . Feedforward laser line width narrowing scheme using acousto-optic frequency shifter and direct digital synthesizer[J]. Journal of Lightwave Technology, 2019, 37 (18): 4657- 4664.
doi: 10.1109/JLT.2019.2915637 |
23 |
XU K , WU Z L , ZHENG J Y , et al. Long-term stability improvement of tunable optoelectronic oscillator using dynamic feedback compensation[J]. Optics Express, 2015, 23 (10): 12935- 12941.
doi: 10.1364/OE.23.012935 |
24 |
SNITZER E . Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 1961, 32 (1): 36- 39.
doi: 10.1063/1.1735955 |
25 |
SPRANGLEP , TING A , PENANO J , et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE Journal of Quantum Electronics, 2009, 45 (2): 138- 148.
doi: 10.1109/JQE.2008.2002501 |
26 | 邵禹, 王德江, 张迪, 等. 单光子激光测距技术研究进展[J]. 激光与光电子学进展, 2021, 58 (10): 258- 266. |
SHAO Y , WANG D J , ZHANG D , et al. Research progress of single photon laser ranging technology[J]. Laser & Optoelectronics Progress, 2021, 58 (10): 258- 266. | |
27 | VILNROTTER V, LAU C W, SRINIVASAN M, et al. Anoptical array receiver for deep-space communication through atmospheric turbulence[R]. Washington: JPL Publication, 2003: 42-154. |
28 |
ZHOU G Q , ZHOU X , YANG J , et al. Flash lidar sensor using fiber-coupled APDs[J]. IEEE Sensors Journal, 2015, 15 (9): 4758- 4768.
doi: 10.1109/JSEN.2015.2425414 |
29 | EUROLAS Data Center (EDC). Stations informations[EB/OL]. [2021-07-30]. https://edc.dgfi.tum.de/en/stations/7840/. |
30 | 张海峰, 龙明亮, 邓华荣, 等. 地基空间碎片激光测距技术发展与应用(特邀)[J]. 光子学报, 2020, 49 (11): 1149004. |
ZHANG H F , LONG M L , DENG H R , et al. Development and application for ground-based space debris laser ranging (invited)[J]. Acta Photonica Sinica, 2020, 49 (11): 1149004. | |
31 | 龙明亮, 邓华荣, 张海峰, 等. 1 kHz重复频率多脉冲皮秒激光器研制及其空间碎片激光测距应用[J]. 光学学报, 2021, 41 (6): 155- 162. |
LONG M L , DENG H R , ZHANG H F , et al. Development of multiple pulse picosecond laser with 1 kHz repetition rate and its application in space debris laser ranging[J]. Acta Optica Sinica, 2021, 41 (6): 155- 162. | |
32 |
WILKINSON M , SCHREIBER U , PROCHAZKA I , et al. The next generation of satellite laser ranging systems[J]. Journal of Geodesy, 2019, 93 (11): 2227- 2247.
doi: 10.1007/s00190-018-1196-1 |
33 | LU W , LIU L R , SUN J F , et al. Analysis of complex axis control loop in satellite laser communications[J]. Optik-International Journal for Light and Electron Optics, 2011, 123 (5): 458- 461. |
34 |
ZHANG F R , HAN J F , RUAN P . Beam pointing analysis and a novel coarse pointing assembly design in space laser communication[J]. Optik, 2019, 189, 130- 147.
doi: 10.1016/j.ijleo.2019.05.079 |
35 |
ALEXANDER B F , KIM C N . Elimination of systematic errorin sub-pixel centroid estimation[J]. Optical Engineering, 1991, 30 (9): 1320- 1331.
doi: 10.1117/12.55947 |
36 | LIANG H D , LIU C L , HE B , et al. A binary method of multi-sensor image registration based on angle traversal[J]. Infrared Physics & Technology, 2018, 95, 189- 198. |
37 | CANNY J . A computational approach to edge detection[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986, 8 (6): 679- 698. |
38 |
SKORMIN V A , TASCILLO M A , NICHOLSON D J . Jitter rejection technique in satellite-based laser communication system[J]. Optical Engineering, 1993, 32 (11): 2764- 2769.
doi: 10.1117/12.148103 |
39 | HIROKO S . A consideration of thermal effect on pointing measured on a nasmyth focus of the CSO 10.4 leight on telescope at λ=350 μm[J]. Technical Memorandum, 2004, 11, 134- 137. |
40 | LIN Y, DING L W. The adaptive fuzzy PID control study of active vibration isolation system[C]//Proc. of the IEEE 10th World Congress on Intelligent Control and Automation, 2012: 1120-1123. |
41 | 冯甜甜, 高晶敏. 一种空间目标高精度指向控制方法[J]. 中国空间科学技术, 2020, 40 (2): 1- 9. |
FENG T T , GAO J M . A high accuracy pointing control method for space target[J]. Chinese Space Science and Technology, 2020, 40 (2): 1- 9. | |
42 | GIOVANNETTI V , MACCONE L , LLOYD S . Enhanced positioning and clock synchronization[J]. Nature, 2001, 312, 417- 419. |
43 |
GIOVANNETTI V , MACCONE L , SHAPIRO J H , et al. Extended phase-matching conditions for improved entanglement generation[J]. Physical Review A, 2002, 66 (4): 043813.
doi: 10.1103/PhysRevA.66.043813 |
44 |
GIOVANNETTI V , LLOYD S , MACCONE L . Quantum cryptographic ranging[J]. Journal of Optics B: Quantum and Semi-classical Optics, 2002, 4 (4): S413.
doi: 10.1088/1464-4266/4/4/330 |
45 |
HONG C K , OU Z Y , MANDEL L . Measurement of sub-picosecond time intervals between two photons by interference[J]. Physical review letters, 1987, 59 (18): 2044.
doi: 10.1103/PhysRevLett.59.2044 |
46 |
SANAKA K , KAWAHARA K , KUGA T . New high-efficiency source of photon pairs for engineering quantum entanglement[J]. Physics Review Letters, 2001, 86 (24): 5620.
doi: 10.1103/PhysRevLett.86.5620 |
47 | LI Z Y, ZOU J, ZHU H H, et al. Silicon photonic sensor with intensity interrogation by employing the cascade of ring resonator and mach-zehnder interferometer[C]//Proc. of the Confe-rence on Lasers and Electro-Optics, 2020. |
48 |
DUAN S Q , CONG S , SONG Y Y . A survey on quantum positioning system[J]. International Journal of Modelling and Simulation, 2021, 41 (4): 265- 283.
doi: 10.1080/02286203.2020.1738035 |
49 | 丛爽, 宋媛媛. 量子定位系统中符合计数与到达时间差的获取[J]. 北京航空航天大学学报, 2020, 46 (10): 1834- 1843. |
CONG S , SONG Y Y . Coincidence counting and acquisition of the time difference of arrival in quantum positioning systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (10): 1834- 1843. | |
50 |
TANZILLI S , DE R H , TITTEL W , et al. Highly efficient photon-pair source using periodically poled lithium niobate waveguide[J]. Electronics Letters, 2001, 37 (1): 26- 28.
doi: 10.1049/el:20010009 |
51 |
RUBIN M H , KLYSHKO D N , SHIH Y , et al. Theory of two-photon entanglement in type-Ⅱ optical parametric down-conversion[J]. Physical Review A, 1994, 50 (6): 5122- 5133.
doi: 10.1103/PhysRevA.50.5122 |
52 |
FRAME A , MINAEVA O , SIMON D S , et al. Broadband source of polarization entangled photons[J]. Optics Letters, 2012, 37 (11): 1910- 1912.
doi: 10.1364/OL.37.001910 |
53 |
KWIAT P G , MATTLE K , WEINFURTER H , et al. New high-intensity source of polarization-entangled photon pairs[J]. Physical Review Letters, 1995, 75 (24): 4337- 4341.
doi: 10.1103/PhysRevLett.75.4337 |
54 | 吴德伟, 李响, 杨春燕, 等. 基于超导约瑟夫森结的双路径量子纠缠微波信号研究进展[J]. 量子电子学报, 2017, 34 (1): 1- 8. |
WU D W , LI X , YANG C Y , et al. Progress of dual-path quantum entanglement microwave signals based on superconducting Josephson junction[J]. Chinese Journal of Quantum Electronics, 2017, 34 (1): 1- 8. | |
55 | FRASCA M, FARINA A. Entangled coherent states for quantum radar applications[C]//Proc. of the IEEE International Radar Conference, 2020: 969-972. |
56 | 李宇怀. 星载量子纠缠源关键技术与发展应用[D]. 合肥: 中国科学技术大学, 2017. |
LI Y H. The key technologies of spaceborne quantum entanglement source and its applications[D]. Hefei: University of Science and Technology of China, 2017. | |
57 | LOHRMANN A , PERUMANGATT C , VILLAR A , et al. Broadband pumped polarization entangled photon-pair source in a linear beam displacement interferometer[J]. Applied Physics Letters, 2020, 116 (2): 0211011- 0211014. |
58 | OSER D , TANZILLI S , MAZEAS F , et al. High-quality photonic entanglement out of a stand-alone silicon chip[J]. NPJ Quantum Information, 2020, 6 (1): 247- 255. |
59 |
MONROE C , KIM J . Scaling the ion trap quantum processor[J]. Science, 2013, 339 (6124): 1164- 1169.
doi: 10.1126/science.1231298 |
60 |
HAGLEYE , MAITRE X , NOGUES G , et al. Generation of Einstein-Podolsky-Rosen pairs of atoms[J]. Physical Review Letters, 1997, 79 (1): 1.
doi: 10.1103/PhysRevLett.79.1 |
61 |
ISRAEL Y , COHEN L , SONG X , et al. Entangled coherent states created by mixing squeezed vacuum and coherent light[J]. Optica, 2019, 6 (6): 753- 757.
doi: 10.1364/OPTICA.6.000753 |
62 |
BOTO A N , ABRAMS D S , WILLIAMS , et al. Quantum interferometric optical lithography: exploiting entanglement tobeat the diffraction limit[J]. Physical Review Letters, 2000, 85 (13): 2733- 2736.
doi: 10.1103/PhysRevLett.85.2733 |
63 |
SNIJDERS H , FREY J , NORMAN J , et al. Fiber-coupled cavity-QED source of identical single photons[J]. Physical Review Applied, 2018, 9 (3): 031002.
doi: 10.1103/PhysRevApplied.9.031002 |
64 | HELSTROM C W. Detection theory and quantum mechanics[C]//Proc. of the IEEE International Symposium on Circuits & Systems, 2007: 2534-2537. |
65 |
HELSTROM C W . Detection theory and quantum mechanics[J]. Information and Control, 1967, 10 (3): 254- 291.
doi: 10.1016/S0019-9958(67)90302-6 |
66 | PARLATO I, GAGGERO A, CRISTIANO R. SNSPD with parallel nanowires (conference presentation)[C]//Proc. of the Photon Counting Applications, 2017: 1022904. |
67 | ROMERO G , GARCIA-RIPOLL J J , SOLANO E . Photodetection of propagating quantum microwaves in circuit QED[J]. Physica Scripta, 2009, 137, 014004. |
68 | BULLER G S , COLLINS R J . Single-photon generation and detection[J]. Measurement Science & Technology, 2010, 21 (1): 12002- 12028. |
69 | SEKATSKI P , SANGOUARD N , BUSSIERES F , et al. Detector imperfections in photonpair source characterization[J]. Journal of physics B atomic molecular & optical physics, 2011, 45 (12): 124016- 124023. |
70 | KIRDODA J, et al. High efficiency planar geonsi single-photon avalanche diode detectors[C]//Proc. of the Conference on Lasers and Electro-Optics, 2019. |
71 | YANG M, LIAO S K, LI Y, et al. Evaluating the radiation effects on the characteristics of the silicon avalanche photodiode with protons[C]//Proc. of the IOP Conference Series: Materials Science and Engineering, 2019, 562: 012076. |
72 | 刘岩鑫, 范青, 李翔艳, 等. 超低暗计数率硅单光子探测器的实现[J]. 光学学报, 2020, 40 (10): 14- 19. |
LIU Y X , FAN Q , LI X Y , et al. Realization of silicon single-photon detector with ultra-low dark count rate[J]. Acta Optica Sinica, 2020, 40 (10): 14- 19. | |
73 | 汪书潮, 苏秀琴, 朱文华, 等. 基于弹性变分模态提取的时间相关单光子计数信号去噪[J]. 物理学报, 2021, 70 (17): 159- 168. |
WANG S C , SU X Q , ZHU W H , et al. A time-correlated single photon counting signal denoising method based on elastic variational mode extraction[J]. Acta Physica Sinica, 2021, 70 (17): 159- 168. | |
74 | PROCHAZKA I , BLAZEJ J , FLEKOVA T , et al. Silicon based photon counting detector providing femtosecond detection delay stability[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26 (2): 3900205. |
75 | 宋媛媛, 丛爽, 尚伟伟, 等. 量子导航定位系统国内外研究现状及其展望(上)[C]//第36届中国控制会议, 2017: 5853-5858. |
SONG Y Y, CONG S, SHANG W W, et al. Research status and prospects of quantum navigation and positioning system at domestic and abroad (Part Ⅰ)[C]//Proc. of the 36th Chinese Control Conference, 2017: 5853-5858. | |
76 | 丛爽, 段士奇. 基于量子卫星"墨子号"的量子测距过程仿真实验研究[J]. 系统仿真学报, 2021, 33 (2): 377- 388. |
CONG S , DUAN S Q . Simulation experiment of quantum ranging process based on the "mozi" quantum satellite[J]. Journal of System Simulation, 2021, 33 (2): 377- 388. | |
77 |
MALIK M , MAGANA-LOAIZA O S , BOYD R W . Quantum-secured imaging[J]. Applied Physics Letters, 2012, 101 (24): 241103.
doi: 10.1063/1.4770298 |
78 |
PⅡRONEN P , ELORANTA E W . Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter[J]. Optics Letters, 1994, 19 (3): 234- 236.
doi: 10.1364/OL.19.000234 |
79 | 魏婷婷, 杨家志, 周国清, 等. 基于改进EWT的浅水激光雷达回波信号降噪[J]. 中国激光, 2021, 48 (11): 158- 169. |
WEI T T , YANG J Z , ZHOU G Q , et al. Denoising of shallow-water lidar echo signal based on improved EWT[J]. Chinese Journal of Lasers, 2021, 48 (11): 158- 169. | |
80 |
ARIEF H , STRANDG H , TVEITE H , et al. Land cover segmentation of airborne LiDAR data using stochastic atrous network[J]. Remote Sensing, 2018, 10 (6): 973.
doi: 10.3390/rs10060973 |
81 |
ZHANG X , POULS J , WU M C . Laser frequency sweep linearization by iterative learning pre-distortion for FMCW lidar[J]. Optics Express, 2019, 27 (7): 9965- 9974.
doi: 10.1364/OE.27.009965 |
82 | STOVE A G . Linear FMCW radar techniques[J]. IEE Proceedings. Part F: Radar and Signal Processing, 1992, 139 (5): 340- 343. |
83 | STANN B , AHMED A , WILLIAM R , et al. Line imaging ladar using a laser diode transmitter and FM/cw radar principles for submunition applications[J]. Laser Radar Technology and Applications, 2000, 4035, 192- 203. |
84 | 黄志洵, 姜荣. 从传统雷达到量子雷达[J]. 前沿科学, 2017, 11 (41): 4- 21. |
HUANG Z X , JIANG R . From the classical radar to the quantum radar[J]. Frontier Science, 2017, 11 (41): 4- 21. | |
85 | 洪光烈, 梁新栋, 刘豪, 等. 连续波差分吸收激光雷达探测路径大气CO2平均浓度[J]. 光谱学与光谱分析, 2020, 40 (12): 3653- 3658. |
HONG G L , LIANG X D , LIU H , et al. Detection of CO2 average concentration in atmospheric path by CW modulated differential absorption lidar[J]. Spectroscopy and Spectral Analysis, 2020, 40 (12): 3653- 3658. | |
86 | LUKIN K. Range resolution in quantum noise radar[C]//Proc. of the 21st International Radar Symposium, 2020: 185-188. |
87 | 代志伟, 樊昕昱, 何祖源. 面向FMCW激光雷达系统测距测速的光源相位噪声补偿方法[J]. 光通信技术, 2021, 45 (7): 5- 9. |
DAI Z W , FAN X T , HE Z Y . Phase-noise-compensation method of optical source for velocity measurement by FMCW lidar[J]. Optical Communication Technology, 2021, 45 (7): 5- 9. | |
88 | 罗远, 贺岩, 耿立明, 等. 基于光子计数技术的远程测距激光雷达[J]. 中国激光, 2016, 43 (5): 245- 252. |
LUO Y , HE Y , GENG L M , et al. Long-distance laser ranging lidar based on photon counting technology[J]. Chinese Journal of Lasers, 2016, 43 (5): 245- 252. | |
89 | DU B C , PANG C K , WU D , et al. High-speed photon-counting laser ranging for broad range of distances[J]. Scientific Reports, 2018, 8, 4198. |
90 | AL-MOAHMMED H A. Quantum radar: a brief analytical study[C]//Proc. of the 16th International Computer Engineering Conference, 2020: 174-180. |
91 | WANG Q , ZHANG Y , XU Y N , et al. Pseudorandom modulation quantum secured lidar[J]. Optik, 2015, 126 (22): 3344- 3348. |
92 | 王宏强, 刘康, 程永强, 等. 量子雷达及其研究进展[J]. 电子学报, 2017, 45 (2): 492- 500. |
WANG H Q , LIU K , CHENG Y Q , et al. The advances in quantum radar[J]. Acta Electronica Sinica, 2017, 45 (2): 492- 500. | |
93 | SCULLY M O , ZHU S Y , GRAVRIELIDESA . Degenerate quantum-beats laser: lasing without inversion and inversion without lasing[J]. Physical Review Letters, 1989, 62, 2813- 2823. |
94 | GUHA S , ERKMEN B . Gaussian-state quantum-illumination receivers for target detection[J]. Physical Review A, 2009, 80 (5): 052310. |
95 | GUHA S. Receiver design to harness quantum illumination advantage[C]//Proc. of the IEEE International Symposium on Information Theory, 2009: 963-967 |
96 | BOURASSA J , WILSON C M . Progress toward an all-microwave quantum illumination radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35 (11): 58- 69. |
97 | LOPAEVA E D , DEGIOVANNI I P , OLIVARES S . Experimental realization of quantum illumination[J]. Physical Review Letters, 2013, 110 (15): 153603. |
98 | 冯博, 张雪松, 贾延延. 量子计量技术在预警机中的应用探讨[J]. 中国电子科学研究院学报, 2015, 10 (2): 125- 131. |
FENG B , ZHANG X S , JIA Y Y . Discussion on the applications of quantum metrology technology in AWACS[J]. Journal of China Academy of Electronics and Information Technology, 2015, 10 (2): 125- 131. | |
99 | 江涛, 孙俊. 量子雷达探测目标的基本原理与进展[J]. 中国电子科学研究院学报, 2014, 9 (1): 10- 16. |
JIANG T , SUN J . The principle and development of quantum radar detection target[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9 (1): 10- 16. | |
100 | LUONG D, RAJAN S, BALAJI B. Quantum two-mode squeezing radar: snr and detection performance[C]//Proc. of the IEEE International Radar Conference, 2020: 761-765. |
101 | LIU K , XIAO H T , FAN H Q , et al. Analysis of quantum radar cross section and its influence on target detection performance[J]. Photonics Technology Letters, 2014, 26 (11): 1146- 1149. |
102 | FANG C H. The closed-form expressions for the bistatic quantum radar cross section of the typical simple plates[C]//Proc. of the IEEE Sensors Journal, 2019, 20(5): 2348-2355. |
103 | 徐泽华, 李伟, 许强, 等. 锥柱复合目标量子雷达散射截面分析[J]. 光子学报, 2018, 47 (4): 141- 147. |
XU Z H , LI W , XU Q , et al. Analysis of quantum radar cross section of conical composite target[J]. Acta Photonica Sinica, 2018, 47 (4): 141- 147. | |
104 | VILNROTTER V A . Quantum receiver for distinguisking between binary coherent-state signals with partitioned-interval detection and constant-intensity local lasers[J]. NASA Interplanetary Network Progress Report, 2012, 189 (42): 42- 189. |
105 | WANG Q, ZHANG Y, HAO L L, et al. Super-resolving quantum LADAR with even coherent states sources at shot noise limit[C]//Proc. of the IEEE International Conference on Optoelectronics & Microelectronics, 2015: 19-22. |
106 | WANG Q , HAO L L , ZHANG Y , et al. Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffice to beat the shot-noise limit[J]. Optics Express, 2016, 24 (5): 5045- 5056. |
107 | 张建东, 张子静, 赵远, 等. 压缩真空注入超灵敏干涉型量子激光雷达[J]. 红外与激光工程, 2017, 46 (7): 64- 69. |
ZHANG J D , ZHANG Z J , ZHAO Y , et al. Super-sensitivity interferometric quantum lidar with squeezed-vacuum injection[J]. Infrared and Laser Engineering, 2017, 46 (7): 64- 69. | |
108 | BRANDSEMA M. Current readiness for quantum radar implementation[C]//Proc. of the IEEE Conference on Antenna Measurements & Applications, 2018. |
109 | SHI D S , LI M , HUANG G H , et al. Quantum lidar based on a random interleaved optical pulse sequence consisting of wavelength-time quantum states[J]. Applied Optics, 2018, 57 (25): 7082- 7088. |
110 | SMITH J . Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement[J]. Quantum Information and Computation Ⅶ, 2009, 7342, 73420A. |
111 | 吴峰, 顾杰, 鲜佩, 等. 量子雷达发展趋势及对抗方法[J]. 电子信息对抗技术, 2021, 36 (3): 1- 6.1-6, 12 |
WU F , GU J , XIAN P , et al. Technology trends and countermeasures of quantum radar[J]. Electronic Information Warfare Technology, 2021, 36 (3): 1- 6.1-6, 12 |
[1] | Yuzhao MA, Nan CHEN, Xinglong XIONG. Wind shear warning algorithm based on PCA and phase difference correction [J]. Systems Engineering and Electronics, 2020, 42(1): 52-60. |
[2] | MIAO Qi-guang1,2, SHI Jun-jie1, LIU Tian-ge1, SHI Dun1. New efficient DSM genertating algorithm based on TIN [J]. Systems Engineering and Electronics, 2014, 36(9): 1868-1373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||