Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (2): 373-378.doi: 10.12305/j.issn.1001-506X.2023.02.06
• Electronic Technology • Previous Articles
Yonghua ZENG1, Junyao MA2,*, Chaoyan HUANG3, Zhihui MAO3, Tingting WU3
Received:
2021-11-25
Online:
2023-01-13
Published:
2023-02-04
Contact:
Junyao MA
CLC Number:
Yonghua ZENG, Junyao MA, Chaoyan HUANG, Zhihui MAO, Tingting WU. Color image denoising method combining prue quaternion and dictionary learning[J]. Systems Engineering and Electronics, 2023, 45(2): 373-378.
Table 1
SSIM and PSNR values of different models with σ=25"
图像 | 评价指标 | 噪声图像 | K-SVD | K-QSVD | pQS |
1 | SSIM PSNR | 0.367 2 20.18 | 0.813 4 29.24 | 0.765 5 30.44 | 0.786 4 30.68 |
2 | SSIM PSNR | 0.541 2 20.17 | 0.858 4 26.57 | 0.877 3 28.89 | 0.888 6 29.12 |
3 | SSIM PSNR | 0.600 2 20.17 | 0.822 3 24.72 | 0.873 0 27.91 | 0.882 5 28.16 |
4 | SSIM PSNR | 0.621 7 20.17 | 0.815 0 23.75 | 0.849 1 27.80 | 0.858 6 27.87 |
5 | SSIM PSNR | 0.498 3 20.18 | 0.926 9 29.57 | 0.936 0 31.51 | 0.935 6 31.70 |
6 | SSIM PSNR | 0.445 2 20.17 | 0.837 7 27.26 | 0.791 4 29.54 | 0.797 7 29.73 |
7 | SSIM PSNR | 0.448 1 20.17 | 0.801 1 25.07 | 0.786 3 28.43 | 0.800 0 28.64 |
8 | SSIM PSNR | 0.526 5 20.17 | 0.817 5 26.58 | 0.791 4 28.62 | 0.806 1 28.79 |
9 | SSIM PSNR | 0.499 0 20.17 | 0.813 6 25.77 | 0.771 7 28.32 | 0.778 8 28.51 |
10 | SSIM PSNR | 0.329 3 20.17 | 0.820 8 29.54 | 0.764 9 31.72 | 0.762 8 31.95 |
Table 2
SSIM and PSNR values of different models with σ=35"
图像 | 评价指标 | 噪声图像 | K-SVD | K-QSVD | pQS |
1 | SSIM PSNR | 0.244 6 17.25 | 0.751 7 28.04 | 0.690 3 28.78 | 0.716 5 29.06 |
2 | SSIM PSNR | 0.399 5 17.25 | 0.790 6 25.81 | 0.819 0 27.11 | 0.842 5 27.48 |
3 | SSIM PSNR | 0.465 6 17.25 | 0.790 6 24.18 | 0.819 0 26.24 | 0.833 4 26.43 |
4 | SSIM PSNR | 0.502 0 17.25 | 0.784 0 23.34 | 0.792 3 26.01 | 0.810 1 26.18 |
5 | SSIM PSNR | 0.367 2 17.25 | 0.888 1 28.23 | 0.909 2 29.73 | 0.908 0 30.05 |
6 | SSIM PSNR | 0.320 4 17.25 | 0.786 6 26.42 | 0.743 3 28.00 | 0.749 8 28.18 |
7 | SSIM PSNR | 0.328 1 17.25 | 0.749 2 24.48 | 0.719 2 26.67 | 0.732 8 26.85 |
8 | SSIM PSNR | 0.405 9 17.25 | 0.777 6 25.80 | 0.728 0 26.94 | 0.748 4 27.20 |
9 | SSIM PSNR | 0.382 3 17.25 | 0.768 0 25.14 | 0.711 5 26.65 | 0.722 4 26.93 |
10 | SSIM PSNR | 0.231 7 17.25 | 0.743 1 28.21 | 0.692 5 29.90 | 0.688 8 30.18 |
Table 3
SSIM and PSNR values of different models with σ=50"
图像 | 评价指标 | 噪声图像 | K-SVD | K-QSVD | pQS |
1 | SSIM PSNR | 0.148 1 14.15 | 0.695 9 26.43 | 0.607 2 27.25 | 0.626 8 27.48 |
2 | SSIM PSNR | 0.279 2 14.15 | 0.772 9 24.67 | 0.769 2 25.36 | 0.813 8 25.75 |
3 | SSIM PSNR | 0.328 3 14.15 | 0.736 6 23.25 | 0.772 2 24.21 | 0.796 8 24.64 |
4 | SSIM PSNR | 0.367 9 14.16 | 0.732 0 22.54 | 0.777 1 24.03 | 0.798 7 24.40 |
5 | SSIM PSNR | 0.246 3 14.15 | 0.818 7 26.39 | 0.883 7 27.39 | 0.883 3 27.72 |
6 | SSIM PSNR | 0.209 0 14.15 | 0.710 7 25.12 | 0.689 1 26.41 | 0.692 8 26.65 |
7 | SSIM PSNR | 0.220 3 14.16 | 0.670 6 23.59 | 0.639 1 24.96 | 0.655 2 25.19 |
8 | SSIM PSNR | 0.292 3 14.15 | 0.721 0 24.67 | 0.660 8 25.30 | 0.680 9 25.63 |
9 | SSIM PSNR | 0.265 6 14.14 | 0.706 2 24.11 | 0.644 4 25.01 | 0.654 4 25.32 |
10 | SSIM PSNR | 0.154 3 14.16 | 0.636 2 26.50 | 0.775 9 28.32 | 0.769 7 28.49 |
1 |
JIA Z G , NG M K , WANG W . Color image restoration by saturation-value total variation[J]. SIAM Journal on Imaging Sciences, 2019, 12 (2): 972- 1000.
doi: 10.1137/18M1230451 |
2 | PLOTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]//Proc. of the IEEE Conference on Compu-ter Vision and Pattern Recognition, 2017: 1586-1595. |
3 | WEISS Y, FREEMAN W T. What makes a good model of natural images?[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2007. |
4 | BENESTY J, CHEN J D, HUANG Y T. Study of the widely linear Wiener filter for noise reduction[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2010: 205-208. |
5 |
TSIOTSIOS C , PETROU M . On the choice of the parameters for anisotropic diffusion in image processing[J]. Pattern Recognition, 2013, 46 (5): 1369- 1381.
doi: 10.1016/j.patcog.2012.11.012 |
6 | TIAN C , CHEN Y G . Image segmentation and denoising algorithm based on partial differential equations[J]. IEEE Sensors Journal, 2019, 20 (20): 11935- 11942. |
7 |
HAJIABOLI M R . An anisotropic fourth-order diffusion filter for image noise removal[J]. International Journal of Computer Vision, 2011, 92 (2): 177- 191.
doi: 10.1007/s11263-010-0330-1 |
8 |
ZENG W L , LU X B , TAN X H . Non-linear fourth-order telegraph-diffusion equation for noise removal[J]. IET Image Processing, 2013, 7 (4): 335- 342.
doi: 10.1049/iet-ipr.2012.0155 |
9 |
LAUS F , NIKOLOVA M , PERSCH J , et al. A nonlocal denoising algorithm for manifold-valued images using second order statistics[J]. SIAM Journal on Imaging Sciences, 2017, 10 (1): 416- 448.
doi: 10.1137/16M1087114 |
10 |
ELAD M , AHARON M . Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Trans.on Image Processing, 2006, 15 (12): 3736- 3745.
doi: 10.1109/TIP.2006.881969 |
11 | HAN X H , CHEN Y W , XU G . High-order statistics of weber local descriptors for image representation[J]. IEEE Trans.on Cybernetics, 2014, 45 (6): 1180- 1193. |
12 |
VIJAYAN M , RAMASUNDARAM M . Moving object detection using vector image model[J]. Optik, 2018, 168, 963- 973.
doi: 10.1016/j.ijleo.2018.05.012 |
13 |
AHARON M , ELAD M , BRUCKSTEIN A . K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Trans.on Signal Processing, 2006, 54 (11): 4311- 4322.
doi: 10.1109/TSP.2006.881199 |
14 |
XU Y , YU L C , XU H T , et al. Vector sparse representation of color image using quaternion matrix analysis[J]. IEEE Trans.on Image Processing, 2015, 24 (4): 1315- 1329.
doi: 10.1109/TIP.2015.2397314 |
15 | ZHANG F Z . Quaternions and matrices of quaternions[J]. Linear Algebra and its Applications, 1997, 251 (2): 21- 57. |
16 | HAMILTON W R . Elements of quaternions[M]. London: Longmans, Green, & Company, 1866. |
17 | DANTAS C F, COHEN J E, GRIBONVAL R. Hyperspectral image denoising using dictionary learning[C]//Proc. of the 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, 2019. |
18 |
CAI S T , KANG Z , YANG M , et al. Image denoising via improved dictionary learning with global structure and local similarity preservations[J]. Symmetry, 2018, 10 (5): 167.
doi: 10.3390/sym10050167 |
19 |
XU Y Y , YIN W T . A fast patch-dictionary method for whole image recovery[J]. Inverse Problems and Imaging, 2016, 10 (2): 563- 583.
doi: 10.3934/ipi.2016012 |
20 |
TOSIC I , FROSSARD P . Dictionary learning[J]. IEEE Signal Processing Magazine, 2011, 28 (2): 27- 38.
doi: 10.1109/MSP.2010.939537 |
21 |
WU Y , ZHOU J , AKANKWASA N T , et al. Fabric texture representation using the stable learned discrete cosine transform dictionary[J]. Textile Research Journal, 2019, 89 (3): 294- 310.
doi: 10.1177/0040517517743688 |
22 |
KREUTZ-DELGADO K , MURRAY J F , RAO B D , et al. Dictionary learning algorithms for sparse representation[J]. Neural Computation, 2003, 15 (2): 349- 396.
doi: 10.1162/089976603762552951 |
23 | MAIRAL J , ELAD M , SAPIRO G . Sparse representation for color image restoration[J]. IEEE Trans.on Image Processing, 2007, 17 (1): 53- 69. |
24 |
ENGAN K , AASE S O , HUSØY J H . Multi-frame compression: theory and design[J]. Signal Processing, 2000, 80 (10): 2121- 2140.
doi: 10.1016/S0165-1684(00)00072-4 |
25 | MAIRAL J, BACH F, PONCE J, et al. Online dictionary learning for sparse coding[C]//Proc. of the 26th Annual International Conference on Machine Learning, 2009: 689-696. |
26 | LIU B H , LING Q . Edge-guided depth image super-resolution based on K-SVD[J]. IEEE Access, 2020, 8, 41108- 41115. |
27 | PATI Y C, REZAⅡFAR R, KRISHNAPRASAD P S. Ortho-gonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]//Proc. of the 27th Asilomar Conference on Signals, Systems and Computers, 1993: 40-44. |
28 | TIBSHIRANI R . Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58 (1): 267- 288. |
29 | FROSSARD P . What is the right representation for my signal?[J]. IEEE Signal Processing Magazine, 2011, (3): 27- 38. |
30 | WANG Z , BOVIK A C , SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans.on Image Processing, 2004, 13 (4): 600- 612. |
[1] | Renjie ZHAO, Baiqing HU, Xu LYU, Jiayu TIAN. Filtering algorithm of UKF integrated navigation based on dual-Euler angles [J]. Systems Engineering and Electronics, 2021, 43(7): 1912-1920. |
[2] | Renjie ZHAO, Kailong LI, Baiqing HU, Jiayu TIAN. SINS initial alignment algorithm based on improved quaternion damping error model [J]. Systems Engineering and Electronics, 2021, 43(11): 3330-3337. |
[3] | Xu LYU, Baiqing HU, Yongbin DAI, Renjie ZHAO. Application of USQUE based on PSO in attitude estimation of integrated navigation [J]. Systems Engineering and Electronics, 2020, 42(6): 1366-1371. |
[4] | CHEN He, ZHANG Zhili, ZHOU Zhaofa, LIU Pengpeng, ZHAO Junyang. Equivalence analysis between two quaternion based coarse alignment algorithms for SINS with inertial frame [J]. Systems Engineering and Electronics, 2018, 40(5): 1098-1103. |
[5] | GUO Xiaoting, SUN Changku, WANG Peng. Vision and inertial fusion attitude measurement based on diagonalization of matrix robust QCKF [J]. Systems Engineering and Electronics, 2018, 40(2): 402-408. |
[6] | CHANG Lihong, FENG Xiangchu, ZHANG Rui. Image fusion scheme based on quaternion wavelet transform and sparse representation [J]. Systems Engineering and Electronics, 2017, 39(7): 1633-1639. |
[7] | LI Kai-long, HU Bai-qing, CHANG Lu-bin. Modified quaternion unscented Kalman filter [J]. Systems Engineering and Electronics, 2016, 38(6): 1399-1404. |
[8] | LIU Shuai, YAN Feng-gang, JIN Ming, QIAO Xiao-lin. Joint polarization-DOA estimation for conical conformal array based on quaternion MUSIC [J]. Systems Engineering and Electronics, 2016, 38(1): 1-7. |
[9] | LI Jian-guo,CUI Hu-tao,TIAN Yang. Spacecraft attitude estimation algorithm based on multiplicative quaternion and constrained filter [J]. Journal of Systems Engineering and Electronics, 2013, 35(5): 1031-1036. |
[10] | MA Ke-xin, WANG Hui-nan. Dualquaternion relative position and attitude estimation algorithm of close formation flight based on vision [J]. Journal of Systems Engineering and Electronics, 2013, 35(2): 391-396. |
[11] | ZHAO Lin, SU Zhong-hua, HAO Yong, WU Xian-de. Algorithm for agile satellite attitude estimation based on dual quaternion and improved EKF [J]. Systems Engineering and Electronics, 2013, 35(12): 2552-2558. |
[12] | SHENG Han-lin, ZHANG Tian-hong, LIU Dong-dong. Low-cost AHRS design based on extending Kalman filter [J]. Systems Engineering and Electronics, 2013, 35(10): 2158-2164. |
[13] | WU Gao-long, LIU Hua-wei, HAO Shun-yi, ZHANG Zong-lin. Improvement of dualquaternion navigation algorithm and relevant simulation [J]. Journal of Systems Engineering and Electronics, 2011, 33(4): 862-868. |
[14] | ZHOU Wei-dong,QIAO Xiang-wei,JI Yu-ren,HAO Yan-ling. SINS/GPS tightly integrated navigation system based on quaternion square root unscented Kalman filter [J]. Journal of Systems Engineering and Electronics, 2010, 32(12): 2643-2647. |
[15] | FENG Wei, HU Bo. Novel color image registration algorithm using quaternion phase-only correlation [J]. Journal of Systems Engineering and Electronics, 2010, 32(1): 183-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||