Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (11): 3820-3826.doi: 10.12305/j.issn.1001-506X.2024.11.24
• Guidance, Navigation and Control • Previous Articles Next Articles
Shikang FU1,2, Junhui LIU1,2,*, Hao CHEN3, Jiayuan SHAN1,2
Received:
2023-12-18
Online:
2024-10-28
Published:
2024-11-30
Contact:
Junhui LIU
CLC Number:
Shikang FU, Junhui LIU, Hao CHEN, Jiayuan SHAN. Incremental dynamic inverse control based on improved tracking differentiator[J]. Systems Engineering and Electronics, 2024, 46(11): 3820-3826.
1 | LEE Y G, JONGHO P, KIM Y. High angle of attack missile control for agile turn based on reinforcement learning[C]//Proc. of the AIAA SCITECH Forum, 2024: 2391-2400. |
2 |
LIU J J , SUN M W , CHEN Z Q , et al. High AOA decoupling control for aircraft based on ADRC[J]. Journal of Systems Engineering and Electronics, 2020, 31 (2): 393- 402.
doi: 10.23919/JSEE.2020.000016 |
3 |
LIU J J , SUN M W , CHEN Z Q , et al. Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer[J]. Non-linear Dynamics, 2020, 99 (4): 2785- 2799.
doi: 10.1007/s11071-020-05481-1 |
4 | MUKHERJEE B K, THOMAS P R, SINHA M. Automatic recovery of a combat aircraft from a completed Cobra and Herbst maneuver: a sliding mode control based scheme[C]//Proc. of the IEEE Indian Control Conference, 2016: 1247-1257. |
5 | LOMBAERTS T, KANESHIGE J, SCHUET S, et al. Dynamic inversion based full envelope flight control for an eVTOL vehicle using a unified framework[C]//Proc. of the AIAA SCITECH Forum, 2020: 1619-1627. |
6 | LUNGU M . Auto-landing of UAVs with variable center of mass using the backstepping and dynamic inversion control[J]. Aerospace Science and Technology, 2020, 11 (2): 103- 112. |
7 |
SAHA D , VALASEK J , LESHIKAR C , et al. Multiple-timescale nonlinear control of aircraft with model uncertainties[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (3): 536- 552.
doi: 10.2514/1.G004303 |
8 | STEVEN T , THEODOULIS S , THAI S , et al. Nonlinear dynamic inversion flight control design for guided projectiles[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (12): 11- 16. |
9 |
WANG X R , MKHOYAN T , BREUKER D R . Nonlinear incremental control for flexible aircraft trajectory tracking and load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (1): 39- 57.
doi: 10.2514/1.G005921 |
10 | LEE J , KIM Y . Neural network-based nonlinear dynamic inversion control of variable-span morphing aircraft[J]. Journal of Aerospace Engineering, 2020, 234 (10): 1624- 1437. |
11 | SMEUR E , CHU Q , CROON G C . Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (3): 11- 22. |
12 | VANKAMPEN E, POLLACK T. Robust stability and performance analysis of incremental dynamic inversion-based flight control laws[C]//Proc. of the AIAA SCITECH Forum, 2022: 105-116. |
13 | SAFWAT E, KAMEL A, ABBAS M K. Robust nonlinear flight controller for small unmanned aircraft vehicle based on incremental backstepping[C]//Proc. of the AIAA SCITECH Forum, 2020: 154-169. |
14 | LIU J H , SHAN J Y , WANG J N , et al. Incremental sliding-mode control and allocation for morphing-wing aircraft fast maneuverings[J]. Aerospace Science and Technology, 2022, 131 (2): 56- 66. |
15 |
郑积仕, 蒋新华, 陈兴武. 增量非线性动态逆小型无人机速度控制[J]. 系统工程与电子技术, 2013, 35 (9): 1923- 1927.
doi: 10.3969/j.issn.1001-506X.2013.09.20 |
ZHENG J S , JIANG X H , CHEN X W . Velocity control design for the small UAV based on the incremental nonlinear dynamic inversion[J]. Journal of Systems Engineering and Electronics, 2013, 35 (9): 1923- 1927.
doi: 10.3969/j.issn.1001-506X.2013.09.20 |
|
16 |
WANG X R , ERIK K P , CHU Q P , et al. Stability analysis for incremental nonlinear dynamic inversion control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42 (5): 1116- 1129.
doi: 10.2514/1.G003791 |
17 | GRONDMAN F, LOOYE G H N, KUCHAR R O, et al. Design and flight testing of incremental nonlinear dynamic inversion-based control laws for a passenger aircraft[C]//Proc. of the AIAA Guidance Navigation and Control Conference, 2018: 385-387. |
18 | POLLACK T S C, LOOYE G H N, LINDEN F L J. Design and flight testing of flight control laws integrating incremental nonlinear dynamic inversion and servo current control[C]//Proc. of the AIAA SCITECH Forum and Exposition, 2019: 26-49. |
19 |
EZRA T , SERTAC K . Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness[J]. IEEE Trans.on Control Systems Technology, 2021, 29 (3): 1203- 1218.
doi: 10.1109/TCST.2020.3001117 |
20 |
SIMPLICIO P , PAVEL M D , VAN KAMPEN E , et al. An acce-leration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2013, 21 (8): 1065- 1077.
doi: 10.1016/j.conengprac.2013.03.009 |
21 | 刘达, 赵暾, 张占月. 高超声速飞行器三通道耦合制导律与鲁棒控制律设计[J]. 战术导弹技术, 2023, 6 (5): 97-103, 123. |
LIU D , ZHAO T , ZHANG Z Y . A design of three-channel coupling guidance and robust control system for hypersonic vehicle[J]. Tactical Missile Technology, 2023, 6 (5): 97-103, 123. | |
22 | LI Y , LIU X X , LU P , et al. Angular acceleration estimation-based incremental nonlinear dynamic inversion for robust flight control[J]. Control Engineering Practice, 2021, 10 (2): 117- 129. |
23 | LIU J , SUN L G , TAN W Q , et al. Finite time observer based incremental nonlinear fault-tolerant flight control[J]. Aerospace Science and Technology, 2020, 11 (2): 104- 116. |
24 | CERVANTES T J L , CHOI S H , KIM B S . Flight control design using incremental nonlinear dynamic inversion with fixed-lag smoothing estimation[J]. International Journal of Aeronautical and Space Sciences, 2020, 20 (5): 120- 129. |
25 | 韩京清, 王伟. 非线性跟踪─微分器[J]. 系统科学与数学, 1994, (2): 177- 183. |
HAN J Q , WANG W . Nonlinear tracking-differentiator[J]. System Science and Mathematics, 1994, (2): 177- 183. | |
26 | 董飞垚, 雷虎民, 李炯, 等. 带有跟踪微分器的导弹增量动态逆控制律设计[J]. 宇航学报, 2012, 33 (10): 1439- 1444. |
DONG F Y , LEI H M , LI J , et al. Design of incremental dynamic inversion control law for missiles with tracking differentiator[J]. Journal of Astronautics, 2012, 33 (10): 1439- 1444. | |
27 | 史永丽, 侯朝桢. 改进的非线性跟踪微分器设计[J]. 控制与决策, 2008, (6): 647-650, 659. |
SHI Y L , HOU C Z . Design of improved nonlinear tracking differentiator[J]. Control and Decision, 2008, (6): 647-650, 659. | |
28 | 张奕群, 董德发. 非线性跟踪-微分器噪声抑制能力的改进[C]// 1996中国控制与决策学术年会, 1997: 58-64. |
ZHANG Y Q, DONG D F. Improvement of nonlinear tracking differentiator noise suppression ability[C]//Proc. of the 1996 China Academic Annual Conference on Control and Decision Making, 1997: 58-64. | |
29 | SINHA N K , ANANTHKRISHNAN N . Elementary flight dynamics with an introduction to bifurcation and continuation methods[M]. Boca Raton: Taylor and Francis Group, 2021. |
30 | HUANG Y Z , ZHANG Y , POOL D M , et al. Time-delay margin and robustness of incremental nonlinear dynamic inversion control[J]. Journal of Guidance, Control, and Dynamics, 2020, 45 (2): 394- 404. |
31 | ENNS D , BUGAJSKI D , HENDRICK R , et al. Dynamic inversion: an evolving methodology for flight control design[J]. International Journal of Control, 1994, 59 (1): 71- 91. |
32 | 秦天成, 刘世前, 桑元俊, 等. 基于增量动态逆的大型民用飞机容错控制策略[J]. 科学技术与工程, 2021, 21 (2): 839- 844. |
QIN T C , LIU S Q , SANG Y J , et al. Fault tolerant strategy for a large civil aircraft based on incremental nonlinear dynamic inversion[J]. Science Technology and Engineering, 2021, 21 (2): 839- 844. |
[1] | Zhongkai ZHAO, Zeyue GUAN, Hu LI. Nonlinear self-interference cancellation technique based on spline interpolation [J]. Systems Engineering and Electronics, 2024, 46(9): 2916-2925. |
[2] | Ping YAN, Chaochang LI. Motion stability analysis of fin-controlled small supercavitating vehicle [J]. Systems Engineering and Electronics, 2024, 46(7): 2456-2464. |
[3] | Cancan TAO, Rui ZHOU. A method of UAV motion control to optimize air-ground relay network [J]. Systems Engineering and Electronics, 2024, 46(5): 1712-1723. |
[4] | Yang GUI, Bochao ZHENG, Peng GAO. Sliding mode attitude control of quadrotor UAV based on NESO-LFDC [J]. Systems Engineering and Electronics, 2024, 46(3): 1075-1083. |
[5] | Zhengwei LIU, Ying CHEN, Yaobing LU. A study on high resolution radar tracking method for space target [J]. Systems Engineering and Electronics, 2024, 46(2): 488-496. |
[6] | Kun WANG, Xinran DUAN, Zheng CHEN, Jun LI. Nonlinear optimal guidance method with constraints on overload and impact time [J]. Systems Engineering and Electronics, 2024, 46(2): 649-657. |
[7] | Yingjie ZHANG, Hongmeng CHEN, Wenquan GAO, Jian LAN, Chunmao YE, Yan CHEN. High accuracy cooperative tracking and power allocation method in networked radar system [J]. Systems Engineering and Electronics, 2024, 46(11): 3726-3735. |
[8] | Liyao WU, Xichao SU, Lei WANG, Zishuang PAN. Research of formation rendezvous control for manned/unmanned aerial vehicles formation [J]. Systems Engineering and Electronics, 2023, 45(7): 2192-2202. |
[9] | Zhongpu CUI, Songhu GE, Yaxing LI, Yu GUO, Jinling XING, Jin MENG. Partially decoupling based nonlinear digital interference cancellation algorithm [J]. Systems Engineering and Electronics, 2023, 45(4): 973-981. |
[10] | Yang CHEN, Bo TIAN, Chunyang WANG, Jian GONG, Ming TAN, Yingjian ZHAO. FDA platform external interference suppression based on MVDR beamforming [J]. Systems Engineering and Electronics, 2023, 45(1): 32-40. |
[11] | Geng XU, Yongxu HE, Yonggang ZHANG. Inertial-frame-based transfer alignment using Rodriguez parameters [J]. Systems Engineering and Electronics, 2022, 44(9): 2903-2913. |
[12] | Zilin HOU, Ting CHENG, Han PENG. GMPHD based on measurement conversion sequential filtering for maneuvering target tracking [J]. Systems Engineering and Electronics, 2022, 44(8): 2474-2482. |
[13] | Xiaofeng ZHAO, Fei WU, Yebin XU, Jiahui NIU, Wei CAI, Zhili ZHANG. Evaluation method of infrared camouflage effect based on background restoration [J]. Systems Engineering and Electronics, 2022, 44(8): 2554-2561. |
[14] | Sheng GAO, Guangfu MA, Yanning GUO. Fast reconstruction of multiple faults based on adaptive unknown input observer [J]. Systems Engineering and Electronics, 2022, 44(7): 2364-2373. |
[15] | Yan JIN, Dadi ZHAO, Hongbing JI. Parameter estimation of LFM signals based on NAT functions in impulsive noise [J]. Systems Engineering and Electronics, 2022, 44(3): 762-770. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||