Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (8): 2295-2304.doi: 10.12305/j.issn.1001-506X.2023.08.01
• Special Section on "Enterprise Strategic Management and System-of-Systems General Design—Celebrating the 70th Anniversary of National University of Defense Technology" • Previous Articles Next Articles
Tao WANG, Xiaobo LI, Jie ZHANG, Hua HE, Weiping WANG
Received:2023-05-16
Online:2023-07-25
Published:2023-08-03
Contact:
Xiaobo LI
CLC Number:
Tao WANG, Xiaobo LI, Jie ZHANG, Hua HE, Weiping WANG. Evaluation method for the system-of-systems contribution ratio of strategic planning project based on "project-capability" association[J]. Systems Engineering and Electronics, 2023, 45(8): 2295-2304.
Table 1
A model framework for the combat SOS capability generation cycle"
| 要素 | 阶段 | ||||||
| 作战概念开发 | 方案设计论证 | 体系产品研发 | 集成试验验证 | 兵力列装部署 | 战场训练演习 | 体系实战对抗 | |
| D(军事作战理论) | D1(体系作战理论和作战概念创新) | D2(战术流程设计) | D3(作战管理产品开发) | D4(战术战法与装备的作战使用性能验证) | D5(军事作战理论产品部署) | D6(战术验证与开发和作战条令编订) | - |
| O(组织编制体制) | O1(组织指控需求分析) | O2(兵力组织方案设计) | O3(兵力组织产品研发) | — | O4(兵力组织部署) | O5(兵力组织重组) | - |
| T(作战训练演习) | — | T1(训练演习方案项目设计) | T2(训练演习项目产品研发) | T3(内场/靶场集成试验) | — | T4(战场演习训练设施) | T5(战训一体、模拟真实对抗演习) |
| M(装备技术资源) | M1(装备技术方案需求分析) | M2(装备技术方案项目设计) | M3(技术攻关与装备研发) | M4(装备技术综合集成) | M5(装备采办与列装) | M6(装备采办与列装) | - |
| L(指挥能力教培) | — | L1(指挥能力培训方案项目设计) | L2(指挥能力项目产品研发) | — | — | L3(指挥能力训练与兵力教育) | L4(战场指挥艺术) |
| P(军队人力资源) | — | P1(人员方案项目设计) | P2(人力资源培训) | P3(作战试验人员集成试验) | P4(人员部署) | P5(人员训练) | P6(人员实战) |
| F(战场设施保障) | F1(设施配套需求分析) | F2(设施配套方案设计) | F3(设施新建或改造) | F4(设施与装备集成测试) | — | — | F5(设施战场保障与维护) |
Table 2
"Mosaic" support project short form"
| 类型 | 序号 | 项目 | 简介 |
| 体系架构 | 1 | 拒止环境下的协同作战 (collaborative operations in denied environments, CODE) | 研发先进的自主协同算法和监督控制技术 |
| 2 | 体系综合技术和试验 (system-of-systems integrating technology and experimentation, SoSITE) | 开展分布式航空作战体系架构研究 | |
| 3 | 复杂适应性系统组合和设计环境 (complex adaptive system combination and design environment, CASCADE) | 探索可以深入理解系统组件交互行为的数学方法, 提供独特的系统行为视角 | |
| 4 | 跨域多模态感知与瞄准 (cross-domain multi-modality sensing and targeting, CDMST) | 利用有人与无人系统组合, 形成一种可执行广域、跨域监视与瞄准任务的“系统之系统”体系结构 | |
| 5 | 远征城市环境适应性作战测试平台原型 (prototype resilient operations testbed for expeditionary urban scenarios, PROTEUS) | 利用一套软件系统提高海军陆战队士兵在城市环境中作战的能力 | |
| 6 | 自适应跨域杀伤网 (adapting cross-domain kill-webs, ACK) | 研制辅助决策软件来实时将系统分配给杀伤链 | |
| 7 | 分解/重构 (Decomp/Recomp) | 针对“马赛克”战基本作战单元之间的灵活、自主、可靠拼图方式研发相关的分解/重构技术 | |
| 指挥控制 | 8 | “分布式作战”管理 (distributed battle management, DBM) | 协助指挥人员和飞行员管理空对空和空对地作战 |
| 9 | 驾驶舱机组成员自动化系统 (aircrew labor in-cockpit automation system, ALIAS) | 现有的飞机打造一种便于安装、调试和拆除的全自动驾驶系统 | |
| 10 | 对抗环境中的弹性同步规划与评估 (resilient synchronized planning and assessment for the contested environment, RSPACE) | 设计通信网络动态变化的战场环境弹性指挥控制架构 | |
| 11 | 进攻性蜂群使能战术 (offensive swarm-enabled tactics, OFFSET) | 针对蜂群战术、蜂群自主、人-蜂群编队、虚拟现实和物理试验台等核心内容已开展多次“蜂群冲刺”活动 | |
| 12 | 空战演进 (air combat evolution, ACE) | 发展空中视距内自主机动能力 | |
| 组网通信 | 13 | 对抗环境下的通信 (communication in confrontational environment, C2E) | 开发新型自适应通信网络系统 |
| 14 | 任务优化的动态适应网络 (dynamic network adaptation for mission optimisation, DyNAMO) | 支持目前的各种机载网络以及未来网络之间实现互操作 | |
| 15 | 保护前线通信 (protect front-line communications, PFC) | 使位于前线的小规模部队能够在多种电子战环境下进行持久的战术作战行动 | |
| 16 | 海洋交战即时信息 (timely information for maritime engagements, TIMEly) | 构建可快速重构的海空、海面和水下军事力量 | |
| 17 | 基于信息的多元“马赛克” (information based mosaic, IBM2) | 发展网络和数据管理工具, 用于自动建立跨域网络和管理信息流 | |
| 武器平台 | 18 | 深海有效载荷 (upward falling payloads, UFP) | 开发可放置在海底的非致命性武器或战场感知传感器设计方案 |
| 19 | 小精灵 (Gremlins) | 通过载机在防区外发射携带有侦察/电子战载荷、具备组网与协同作战功能的“集群”无人机, 并进行回收 | |
| 20 | 垂钓者 (Angler) | 开发能在深海环境中发现和操纵物体的深海无人潜航器及控制系统 | |
| 基础支撑 | 21 | 导引头成本转化 (seeker cost transformation, SECTR) | 开发创新的武器导引头/制导系统 |
| 22 | 竞争环境目标识别与适应 (target recognition and adaptation in competitive environment, TRACE) | 提升有人和无人机平台对于复杂环境和密集目标的雷达识别精度等 | |
| 23 | 敏捷团队项目 (agile team, A-team) | 支撑“马赛克”战作战概念发展 | |
| 24 | 射频任务运行的融合式协作组件 (简称为CONCERTO) | 开发、实现和演示一种融合的射频资源管理工具 | |
| 25 | 战略技术项目 (strategic technology, ST) | 支撑“马赛克”战作战概念发展 | |
| 26 | 地理空间云分析 (geospatial cloud analysis, GCA) | 提供安全的基于云计算的平台 | |
| 其他基础 | 27 | 指南针 (COMPASS) | 收集和监控活动态势的规划, 分析大量数据流, 显示代表每个假设背后的证据和分析的结果 |
| 28 | 小型作战单元体系增强 (system-of-systems enhanced small unit, SESU) | 运用小型无人机集群技术为美国陆军营、连级部队提供异构分布式作战系统 | |
| 29 | 班组X(简称为LogX) | 从后勤保障的角度完成“马赛克”战中的资源调配 |
Table 3
"Mosaic" combat system-of-systems project system-of-systems contribution ratio"
| 项目 | 贡献率/% | 排序 |
| C2E | 4.296 | 1 |
| DyNAMO | 4.136 | 2 |
| DBM | 4.115 | 3 |
| CASCADE | 4.068 | 4 |
| LogX | 4.035 | 5 |
| ACK | 3.989 | 6 |
| IBM2 | 3.935 | 7 |
| SESU | 3.844 | 8 |
| Gremlins | 3.827 | 9 |
| UFP | 3.667 | 10 |
| SoSITE | 3.577 | 11 |
| CDMST | 3.523 | 12 |
| Decomp/Recomp | 3.511 | 13 |
| PROTEUS | 3.497 | 14 |
| RSPACE | 3.493 | 15 |
| ACE | 3.428 | 16 |
| Angler | 3.377 | 17 |
| A-team | 3.262 | 18 |
| TIMEly | 3.254 | 19 |
| CODE | 3.240 | 20 |
| OFFSET | 3.180 | 21 |
| TRACE | 3.150 | 22 |
| PFC | 3.094 | 23 |
| ST | 2.832 | 24 |
| GCA | 2.827 | 25 |
| CONCERTO | 2.782 | 26 |
| COMPASS | 2.782 | 27 |
| SECTR | 2.710 | 28 |
| ALIAS | 2.569 | 29 |
| 1 |
林木, 王维平, 王涛, 等. 基于使命能力框架的国防项目组合结构优化方法[J]. 系统工程理论与实践, 2022, 42 (10): 2829- 2839.
doi: 10.12011/SETP2021-2622 |
|
LIN M , WANG W P , WANG T , et al. Optimization method of national defense project portfolio structure based on mission capability framework[J]. System Engineering Technology & Practice, 2022, 42 (10): 2829- 2839.
doi: 10.12011/SETP2021-2622 |
|
| 2 | 廉振宇, 顾桐菲, 薛奇, 等. 一体化国家战略体系和能力研究——概念、框架与构建途径[J]. 科学研究, 2023, 41 (4): 615- 622. |
| LIAN Z Y , GU T F , XUE Q , et al. Research on the integrated national strategic system and capability-concept, framework and construction approach[J]. Science Research, 2023, 41 (4): 615- 622. | |
| 3 |
易本胜, 邢蓬宇. 美军作战净评估方法分析[J]. 军事运筹与系统工程, 2015, 29 (1): 18- 24.
doi: 10.3969/j.issn.1672-8211.2015.01.003 |
|
YI B S , XING P Y . Analysis of US military combat net assessment method[J]. Military Operations Research and Systems Engineering, 2015, 29 (1): 18- 24.
doi: 10.3969/j.issn.1672-8211.2015.01.003 |
|
| 4 | BIANCHI J, CREERY M, SCHRAMM H, et al. China's choices: a new tool for assessing the PLA's modernization[R]. India: the Center for Strategic and Budgetary Assessments, 2022. |
| 5 | DRYER D, SHORT M, BEACH T. Capability test methodology's role in system of sytems life cycle acquisitioneach[EB/OL]. [2023-05-10]. https://doi.org/10.251416.2008-1678. |
| 6 |
曹江, 陈彬, 高岚岚, 等. 体系工程"钻石"模型与数智孪生[J]. 科技导报, 2020, 38 (21): 6- 20.
doi: 10.3981/j.issn.1000-7857.2020.21.001 |
|
CAO J , CHEN B , GAO L L , et al. System engineering "diamond" model and digital intelligence twin[J]. Science and Technology Herald, 2020, 38 (21): 6- 20.
doi: 10.3981/j.issn.1000-7857.2020.21.001 |
|
| 7 | 何清成. 基于系统理论的体系作战能力生成模式研究[D]. 北京: 中国科学院研究生院, 2012. |
| HE Q C. Research on system combat capability g eneration model based on system theory[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2012. | |
| 8 | 刘进军, 刘琼, 张昕, 等. 军队战略管理评估工作总体框架研究[J]. 军事运筹与系统工程, 2021, 35 (3): 43- 47. |
| LIU J J , LIU Q , ZHANG X , et al. Research on the overall framework of military strategic management evaluation work[J]. Military Operations Research and Systems Engineering, 2021, 35 (3): 43- 47. | |
| 9 | 陈小阳, 廖天俊, 尚晓凡. 重大项目体系贡献率概略评估流程与方法研究[J]. 军事运筹与评估, 2022, 37 (4): 12- 16. |
| CHEN X Y , LIAO T J , SHANG X F . Research on the process and method of rough evaluation of the contribution ratio of major project system[J]. Military Operations Research and Evaluation, 2022, 37 (4): 12- 16. | |
| 10 | 冯伟, 骆建成, 谢宗仁, 等. 军事战略能力评估指标及评估模型研究[J]. 军事运筹与系统工程, 2019, 32 (1): 11- 14. |
| FENG W , LUO J C , XIE Z R , et al. Research on evaluation indicators and evaluation models of military strategic capabilities[J]. Military Operations Research and Systems Engineering, 2019, 32 (1): 11- 14. | |
| 11 |
耿奎, 吴龙刚, 谢宗仁. 对战略规划评估体系研究的思考[J]. 军事运筹与系统工程, 2018, 32 (3): 5-8, 29
doi: 10.3969/j.issn.1672-8211.2018.03.002 |
|
GENG K , WU L G , XIE Z R . Reflections on the research on strategic planning evaluation system[J]. Military Operations Research and Systems Engineering, 2018, 32 (3): 5-8, 29
doi: 10.3969/j.issn.1672-8211.2018.03.002 |
|
| 12 | 罗承昆, 陈云翔, 项华春, 等. 装备体系贡献率评估方法研究综述[J]. 系统工程与电子技术, 2019, 41 (8): 1789- 1794. |
| LUO C K , CHEN Y X , XIANG H C , et al. A review of research on evaluation methods of equipment system contribution rate[J]. Systems Engineering and Electronics, 2019, 41 (8): 1789- 1794. | |
| 13 | 王茂桓, 刘泽苁, 梁浩哲, 等. 多类型体系贡献率评估的综合问题研究[J]. 系统工程与电子技术, 2022, 44 (5): 1572- 1580. |
| WANG M H , LIU Z H , LIANG H Z , et al. Research on comprehensive problems of contribution rate evaluation of multi-type systems[J]. Systems Engineering and Electronics, 2022, 44 (5): 1572- 1580. | |
| 14 | 胡勇, 朱江, 姜晓辉, 等. 武器系统体系贡献率评估方法研究[J]. 军事运筹与评估, 2022, 37 (4): 17- 23. |
| HU Y , ZHU J , JIANG X H , et al. Research on the evaluation method of the contribution rate of weapon system system[J]. Military Operations Research and Evaluation, 2022, 37 (4): 17- 23. | |
| 15 | 李小波, 王维平, 林木, 等. 体系贡献率评估的研究框架、进展与重点方向[J]. 系统工程理论与实践, 2019, 39 (6): 1623- 1634. |
| LI X B , WANG W P , LIN M , et al. Research framework, progress and key directions of system contribution rate assessment[J]. System Engineering Technology & Practice, 2019, 39 (6): 1623- 1634. | |
| 16 | 李小波, 梁浩哲, 王涛, 等. 面向装备规划计划的体系贡献率评估方法[J]. 科技导报, 2020, 38 (21): 38- 46. |
| LI X B , LIANG H Z , WANG T , et al. Evaluation method of system contribution rate for equipment planning and planning[J]. Science and Technology Herald, 2020, 38 (21): 38- 46. | |
| 17 | 翟永翠, 胡志强. 基于CAS理论的两栖编队作战体系能力涌现模型[J]. 火力与指挥控制, 2021, 46 (9): 133- 142. |
| ZHAI Y C , HU Z Q . Capability emergence model of amphibious formation combat system based on CAS theory[J]. Firepower and Command and Control, 2021, 46 (9): 133- 142. | |
| 18 | BASTIAN N D , FULTON L V , MITCHELL R , et al. Force design analysis of the army aeromedical evacuation company: a quantitative approach[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2013, 10 (1): 23- 30. |
| 19 | 孙盛智, 苗壮, 高赞, 等. 美国马赛克战构想[J]. 火力与指挥控制, 2022, 47 (10): 180- 184. |
| SUN S Z , MIAO Z , GAO Z , et al. Concept of American Mosaic warfare[J]. Firepower and Command and Control, 2022, 47 (10): 180- 184. | |
| 20 | 李磊, 蒋琪, 王彤. 美国马赛克战分析[J]. 战术导弹技术, 2019, (6): 108- 114. |
| LI L , JIANG Q , WANG T . Analysis of American Mosaic warfare[J]. Tactical Missile Technology, 2019, (6): 108- 114. |
| [1] | Fengguo WU, Wei TAO, Hui LI, Jianwei ZHANG, Chengchen ZHENG. UAV intelligent avoidance decisions based on deep reinforcement learning algorithm [J]. Systems Engineering and Electronics, 2023, 45(6): 1702-1711. |
| [2] | Weining MA, Qiwei HU, Wenbin CAO, Xisheng JIA. Equipment selective maintenance decision optimization considering maintenance task assignment [J]. Systems Engineering and Electronics, 2023, 45(6): 1902-1910. |
| [3] | Chen DONG, Yixian SHUAI, Jinpeng ZHOU, Peng LAI, Xianlei CHENG. Cooperative air defense task planning of networked multi-sensor-multi-weapon [J]. Systems Engineering and Electronics, 2022, 44(12): 3738-3746. |
| [4] | Enzhi DONG, Zhonghua CHENG, Rongcai WANG. Combined maintenance strategy of complex two-dimensional warranty equipment considering economic dependence [J]. Systems Engineering and Electronics, 2022, 44(7): 2219-2228. |
| [5] | Yuan LI, Xianming SHI, Yajuan LI, Mei ZHAO. Decision method of operational target attribute based on Adaboost [J]. Systems Engineering and Electronics, 2022, 44(4): 1256-1262. |
| [6] | Yiyang LUO, Qingsong ZHAO, Huachao LI, Yong LI, Jianbin SUN. Framework and modeling method of weaponry utilization knowledge [J]. Systems Engineering and Electronics, 2022, 44(3): 841-849. |
| [7] | Kaixuan CHU, Tianqing CHANG, Depeng KONG, Lei ZHANG, Haoze SUN. Bee colony algorithm based model of tank troop deployment and firepower allocation [J]. Systems Engineering and Electronics, 2022, 44(2): 546-556. |
| [8] | Huaiqiang ZHANG, Tiecheng LI, Jungang DU. Optimization of failure rate and warranty model of shipborne missile system [J]. Systems Engineering and Electronics, 2022, 44(1): 347-356. |
| [9] | Shuangchuan WANG, Xisheng JIA, Qiwei HU, Wenbin CAO, Yunfei MA. Success probability simulation evaluation of phased combat mission of the synthetic force [J]. Systems Engineering and Electronics, 2021, 43(3): 763-772. |
| [10] | Shuangchuan WANG, Xisheng JIA, Qiwei HU, Wenbin CAO, Chiming GUO. Simulation evaluation of mission completion success probability of equipment group during wartime considering random common cause failure [J]. Systems Engineering and Electronics, 2020, 42(11): 2529-2537. |
| [11] | Zeqian LIU, Yiguo JI, Lin YANG, Chunyan TIAN, Junfeng LIU. Hit accuracy analysis of guidance improved conventional aerial bomb [J]. Systems Engineering and Electronics, 2020, 42(9): 2071-2076. |
| [12] | Wenjun LI, Xueqiang YANG, Jiaxing DU. Equipment support data integration based on ODPS [J]. Systems Engineering and Electronics, 2020, 42(6): 1317-1323. |
| [13] | Qiang WANG, Xisheng JIA, Zhonghua CHENG, Shuangchuan WANG, Yunfei MA. Classification of spare parts based on improved local preserving projection in wartime [J]. Systems Engineering and Electronics, 2020, 42(1): 133-140. |
| [14] | XIAO Bing-song, FANG Yang-wang, HU Shi-guo, WANG Lei. New threat assessment method in beyond-the-horizon range air combat [J]. Journal of Systems Engineering and Electronics, 2009, 31(9): 2163-2166. |
| [15] | XIAO Bing-song, FANG Yang-wang, HU Shi-guo, ZENG Xian-wei. Decision methods for cooperative guidance in multi-aircraft air warfare [J]. Journal of Systems Engineering and Electronics, 2009, 31(3): 610-612. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||