Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (3): 763-772.doi: 10.12305/j.issn.1001-506X.2021.03.21
• Systems Engineering • Previous Articles Next Articles
Shuangchuan WANG1(), Xisheng JIA1(
), Qiwei HU1(
), Wenbin CAO2(
), Yunfei MA1(
)
Received:
2020-04-14
Online:
2021-03-01
Published:
2021-03-16
CLC Number:
Shuangchuan WANG, Xisheng JIA, Qiwei HU, Wenbin CAO, Yunfei MA. Success probability simulation evaluation of phased combat mission of the synthetic force[J]. Systems Engineering and Electronics, 2021, 43(3): 763-772.
1 | 张耀辉, 韩小孩, 王少华, 等. 装备任务成功性评估研究现状与展望[J]. 装甲兵工程学院学报, 2014, 28 (5): 1- 6, 14. |
ZHANG Y H , HAN X H , WANG S H , et al. Research status and prospect of equipment mission dependability evaluation[J]. Journal of Academy of Armored Force Engineering, 2014, 28 (5): 1- 6, 14. | |
2 | CHEMWENO P , PINTELON L , MUCHIRI P N , et al. Risk assessment methodologies in maintenance decision making: a review of dependability modeling approaches[J]. Reliability Engineering & Systems Safety, 2018, 17 (3): 64- 77. |
3 |
沈军, 张耀辉. 基于状态预测与评估的部件任务成功性评估研究[J]. 系统工程理论与实践, 2013, 33 (10): 2695- 2700.
doi: 10.12011/1000-6788(2013)10-2695 |
SHEN J , ZHANG Y H . Evaluation of dependability of unit based on state evaluation and prediction[J]. Systems Engineering-Theory & Practice, 2013, 33 (10): 2695- 2700.
doi: 10.12011/1000-6788(2013)10-2695 |
|
4 | 韩小孩, 张耀辉, 张仕新, 等. 故障规律未知时的装备任务成功性评估方法[J]. 系统工程与电子技术, 2017, 39 (6): 1415- 1419. |
HAN X H , ZHANG Y H , ZHANG S X , et al. Research on the method of equipment's dependability evaluation with an unknown failure distribution[J]. Systems Engineering and Electronics, 2017, 39 (6): 1415- 1419. | |
5 | 韩小孩, 张耀辉, 王少华, 等. 考虑维修工作的装备任务成功性评估方法[J]. 系统工程与电子技术, 2017, 39 (3): 687- 692. |
HAN X H , ZHANG Y H , WANG S H , et al. Evaluation model of mission success probability for repairable phased-mission systems[J]. Systems Engineering and Electronics, 2017, 39 (3): 687- 692. | |
6 | 吕建伟, 郭顺合, 徐一帆, 等. 基于多智能体仿真的舰船动力系统航渡任务成功性研究[J]. 系统工程与电子技术, 2019, 41 (8): 1896- 1902. |
LYU J W , GUO S H , XU Y F , et al. Research on mission success probability of ship propulsion system based on multi-agent simulation[J]. Systems Engineering and Electronics, 2019, 41 (8): 1896- 1902. | |
7 | ZHAO J B , HOU P Y , CAI Z Q , et al. Research of mission success importance for a multi-state repairable k-out-of-n system[J]. Advances in Mechanical Engineering, 2018, 10 (2): 1- 16. |
8 | ZHAO J B , SI S B , CAI Z Q , et al. Mission success probability optimization for phased mission systems with repairable component modules[J]. Reliability Engineering and Systems Safety, 2019, 19 (5): 106- 115. |
9 |
SHRESTHA A , XING L D , DAI Y S . Reliability analysis of multistate phased mission systems with unordered and ordered states[J]. IEEE Trans.on Systems, Man and Cybernetics, 2011, 41 (4): 625- 636.
doi: 10.1109/TSMCA.2010.2089513 |
10 | ZHAO J B , CAI Z Q , SI W T , et al. Mission success evaluation of repairable phased mission systems with spare parts[J]. Computers & Industrial Engineering, 2019, 13 (2): 248- 259. |
11 |
刘芳, 陈静, 赵建印, 等. 可修系统混合多任务成功概率评估模型[J]. 系统工程与电子技术, 2012, 34 (2): 328- 332.
doi: 10.3969/j.issn.1001-506X.2012.02.21 |
LIU F , CHEN J , ZHAO J Y , et al. Evaluation model of mixed multi-mission success probability for repairable systems[J]. Systems Engineering and Electronics, 2012, 34 (2): 328- 332.
doi: 10.3969/j.issn.1001-506X.2012.02.21 |
|
12 |
BONDAVALLI A , CHIARADONNA S , DI G F , et al. Dependability modeling and evaluation of multiple-phased systems using DEEM[J]. IEEE Trans.on Reliability, 2004, 53 (4): 509- 522.
doi: 10.1109/TR.2004.837709 |
13 | WU X Y , WU X Y . Extended object-oriented Petri net model for mission reliability simulation of repairable PMS with common cause failures[J]. Reliability Engineering and Systems Safety, 2015, 136 (4): 109- 119. |
14 |
曹畔畔, 罗长远. 可修多阶段任务系统成功概率评估模型[J]. 系统工程, 2016, 34 (2): 138- 143.
doi: 10.3969/j.issn.1001-2362.2016.02.095 |
CAO P P , LUO C Y . Evaluation of equipment dependability taking maintenance into consideration[J]. Systems Engineering, 2016, 34 (2): 138- 143.
doi: 10.3969/j.issn.1001-2362.2016.02.095 |
|
15 | CHEN Y Q, ZHU Y, ZHANG H L. A mission success probability model for equipment system of warship based on the Monte Carlo method[C]//Proc.of the International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2012: 152-155. |
16 |
WU X Y , YAN H , LI L R . Numerical method for reliability analysis of phased-mission system using Markov chains[J]. Communications in Statistics-Theory and Methods, 2012, 41 (21): 3960- 3973.
doi: 10.1080/03610926.2012.697969 |
17 | LI X Y , HUANG H Z , LI Y F . Reliability analysis of phased mission system with non-exponential and partially repairable components[J]. Reliability Engineering and Systems Safety, 2018, 175 (7): 119- 127. |
18 | CAI Z Q, GUO P, LI Y, et al. Evaluation of mission success for binary system with repairable spare parts[C]//Proc.of IEEE International Conference on Industrial Engineering and Engineering Management, 2016: 526-530. |
19 | LYU J M , WU X Y , LIU Y L , et al. Reliability analysis of large phased-mission systems with repairable components based on success-state sampling[J]. Reliability Engineering and Systems Safety, 2015, 142 (10): 123- 133. |
20 | 闫旭, 宋太亮, 曹军海, 等. 面向任务流程的装备体系完成任务概率仿真评估方法[J]. 系统工程与电子技术, 2019, 41 (1): 81- 88. |
YAN X , SONG T L , CAO J H , et al. Mission process oriented simulation evaluation method of mission completion probability for equipment system of systems[J]. Systems Engineering and Electronics, 2019, 41 (1): 81- 88. | |
21 | WU B , CUI L R . Reliability of repairable multi-state two-phase mission systems with finite number of phase switches[J]. Applied Mathematical Modeling, 2020, 77 (2): 1229- 1241. |
22 | AMARI S V , WANG C N , XING L D , et al. An efficient phased-mission reliability model considering dynamic k-out-of-n subsystem redundancy[J]. ⅡSE Transactions, 2018, 27 (4): 96- 106. |
23 |
许双伟, 廉蔺. 装备多阶段作战任务成功性评估[J]. 装备学院学报, 2017, 28 (2): 18- 21.
doi: 10.3783/j.issn.2095-3828.2017.02.004 |
XU S W , LIAN L . Success evaluation of equipment multi-phase combat mission[J]. Journal of Equipment Academy, 2017, 28 (2): 18- 21.
doi: 10.3783/j.issn.2095-3828.2017.02.004 |
|
24 |
刘芳, 赵建印, 郭波. 基于EOOPN的作战单元任务成功性评估仿真模型[J]. 兵工学报, 2007, 28 (4): 481- 486.
doi: 10.3321/j.issn:1000-1093.2007.04.021 |
LIU F , ZHAO J Y , GUO B . Mission success evaluation model based on EOOPN for the division-brigade combat units[J]. Acta Armamentarii, 2007, 28 (4): 481- 486.
doi: 10.3321/j.issn:1000-1093.2007.04.021 |
|
25 | 王睿, 李庆民, 阮旻智, 等. 基于作战单元任务成功性的可修复备件优化[J]. 北京航空航天大学学报, 2012, 38 (8): 1040- 1045. |
WANG R , LI Q M , RUAN M Z , et al. Optimization of repairable spare parts based on combat unit mission success[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38 (8): 1040- 1045. | |
26 |
许双伟, 刘兵, 朱安石. 保障资源约束下的装备多阶段作战任务成功性仿真评估[J]. 兵器装备工程学报, 2018, 39 (6): 114- 116.
doi: 10.11809/bqzbgcxb2018.06.024 |
XU S W , LIU B , ZHU A S . Simulation method for evaluating equipment multi-phase combat mission success under constrained support resource[J]. Journal of Ordnance Equipment Engineering, 2018, 39 (6): 114- 116.
doi: 10.11809/bqzbgcxb2018.06.024 |
|
27 |
曹文斌, 贾希胜, 胡起伟, 等. 随机多阶段任务成功概率仿真评估研究[J]. 兵工学报, 2017, 38 (5): 1002- 1010.
doi: 10.3969/j.issn.1000-1093.2017.05.021 |
CAO W B , JIA X S , HU Q W , et al. Research on simulation of mission completion success probability assessment for random phased mission[J]. Acta Armamentarii, 2017, 38 (5): 1002- 1010.
doi: 10.3969/j.issn.1000-1093.2017.05.021 |
|
28 | WANG S C, HU Q W, CAO W B, et al. Research on simulation modeling for carrying spare parts optimization considering random common cause failures[C]//Proc.of the IOP Conference Series Earth and Environmental Science, 2018: 27-32. |
29 |
王双川, 贾希胜, 胡起伟, 等. 考虑随机共因失效的战时装备群任务成功概率仿真评估[J]. 系统工程与电子技术, 2020, 42 (11): 2529- 2537.
doi: 10.3969/j.issn.1001-506X.2020.11.15 |
WANG S C , JIA X S , HU Q W , et al. Simulation evaluation of mission completion success probability of equipment group during wartime considering random common cause failure[J]. Systems Engineering and Electronics, 2020, 42 (11): 2529- 2537.
doi: 10.3969/j.issn.1001-506X.2020.11.15 |
|
30 |
王强, 贾希胜, 程中华, 等. 随机共因失效条件下战时合成部队携行备件配置优化研究[J]. 兵工学报, 2019, 40 (5): 1083- 1092.
doi: 10.3969/j.issn.1000-1093.2019.05.022 |
WANG Q , JIA X S , CHENG Z H , et al. Allocation optimization of carrying spare parts for combined arms unit based on random common cause failure in Wartime[J]. Acta Armamentarii, 2019, 40 (5): 1083- 1092.
doi: 10.3969/j.issn.1000-1093.2019.05.022 |
|
31 | 宋星, 贾红丽, 王谦, 等. 基于时间序列挖掘的合成旅装备维修保障能力预测[J]. 系统工程与电子技术, 2020, 42 (4): 878- 886. |
SONG X , JIA H L , WANG Q , et al. Prediction of equipment maintenance support capability of synthetic brigade based on time series mining[J]. Systems Engineering and Electronics, 2020, 42 (4): 878- 886. |
[1] | Xing SONG, Hongli JIA, Qian WANG, Rudong ZHAO. Prediction of equipment maintenance support capability of synthetic brigade based on time series mining [J]. Systems Engineering and Electronics, 2020, 42(4): 878-886. |
[2] | Shuangchuan WANG, Xisheng JIA, Qiwei HU, Wenbin CAO, Chiming GUO. Simulation evaluation of mission completion success probability of equipment group during wartime considering random common cause failure [J]. Systems Engineering and Electronics, 2020, 42(11): 2529-2537. |
[3] | WANG Shuangchuan, JIA Xisheng, HU Qiwei, WANG Qiang. Effectiveness evaluation for equipment maintenance support system based on normal grey cloud model [J]. Systems Engineering and Electronics, 2019, 41(7): 1576-1582. |
[4] | WANG Shuangchuan, HU Qiwei, LI Feng, WANG Qiang, RAN Qiaoran, MA Yunfei. Overview on effectiveness evaluation of equipment maintenance support [J]. Systems Engineering and Electronics, 2019, 41(10): 2271-2278. |
[5] | ZHOU Liang, LI Qing-min, WANG Rui, PENG Ying-wu. Spare parts allocation with ship for K/N(G) redundant structure [J]. Systems Engineering and Electronics, 2015, 37(12): 2785-2790. |
[6] | LIU Fang, CHEN Jing, ZHAO Jianyin, SONG Guibao. Evaluation model of mixed multi-mission success probability for repairable systems [J]. Journal of Systems Engineering and Electronics, 2012, 34(2): 328-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||