Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (4): 1127-1133.doi: 10.12305/j.issn.1001-506X.2023.04.21
• Guidance, Navigation and Control • Previous Articles
Yang PANG1, Ming WANG2,*, Ziyi YAN3, Tongyao YUE4, Zhe ZHOU1
Received:
2022-04-24
Online:
2023-03-29
Published:
2023-03-28
Contact:
Ming WANG
CLC Number:
Yang PANG, Ming WANG, Ziyi YAN, Tongyao YUE, Zhe ZHOU. UAV localization method with multi-view fusion[J]. Systems Engineering and Electronics, 2023, 45(4): 1127-1133.
Table 1
Multi-view position measurement results cm"
序号 | 真实位置(x, y, z) | 测量位置(x, y, z) | 平均测量位置(x, y, z) | 测量误差(x, y, z) |
1 | (5, 32, 50) | (3.56, 31.12, 51.42) | (3.04, 30.97, 50.73) | (1.96, 1.03, 0.73) |
(2.12, 30.94, 50.69) | ||||
(3.44, 30.84, 50.09) | ||||
2 | (5, 32, 60) | (1.83, 32.87, 56.93) | (2.55, 32.91, 57.08) | (2.45, 0.91, 2.92) |
(3.07, 32.91, 57.00) | ||||
(2.74, 32.96, 57.32) | ||||
3 | (5, 32, 70) | (4.44, 34.9, 72.11) | (4.68, 35.16, 71.88) | (0.32, 3.16, 1.88) |
(5.37, 35.58, 72.01) | ||||
(4.23, 35.00, 71.52) | ||||
4 | (5, 32, 80) | (5.77, 34.99, 77.41) | (4.92, 34.98, 77.53) | (0.08, 2.98, 2.47) |
(3.99, 35.02, 77.07) | ||||
(5.01, 34.93, 78.12) | ||||
5 | (5, 32, 90) | (4.1, 31.44, 93.35) | (4.61, 31.70, 92.81) | (0.39, 0.3, 2.81) |
(6.83, 31.47, 93.33) | ||||
(2.92, 32.2, 91.77) | ||||
6 | (5, 32, 100) | (6.06, 30.39, 98.63) | (6.13, 29.90, 99.80) | (1.13, 2.10, 0.2) |
(5.29, 29.42, 100.79) | ||||
(7.06, 29.89, 99.98) | ||||
7 | (-18, 32, 73) | (-18.3, 31.23, 76.06) | (-18.4, 31.46, 76.01) | (0.4, 0.54, 3.01) |
(-18.2, 31.41, 75.85) | ||||
(-18.8, 31.75, 76.14) | ||||
8 | (28, 32, 73) | (27.14, 31.62, 70.13) | (27.6, 31.26, 70.44) | (0.4, 0.73, 2.56) |
(28.3, 30.88, 70.38) | ||||
(27.32, 31.3, 70.84) |
1 | 卢元杰, 刘志敏, 孙智孝. 基于模型的无人机系统架构综合评估方法[J]. 系统工程与电子技术, 2022, 44 (4): 1239- 1245. |
LU Y J , LIU Z M , SUN Z X . Model-based integrated evaluation of UAV system architecture[J]. Systems Engineering and Electronics, 2022, 44 (4): 1239- 1245. | |
2 |
MIHO I , TAKATOSHI S . A novel drone's height control algorithm for throughput optimization in disaster resilient network[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (12): 16188- 16190.
doi: 10.1109/TVT.2020.3032151 |
3 |
MOZAFFARI M , SAAD W , BENNIS M , et al. Communications and control for wireless drone-based antenna array[J]. IEEE Trans.on Communications, 2019, 67 (1): 820- 834.
doi: 10.1109/TCOMM.2018.2871453 |
4 | 谷旭平, 唐大全. 基于联邦滤波算法的无人机集群分层协同导航[J]. 系统工程与电子技术, 2022, 44 (3): 967- 976. |
GU X P , TANG D Q . Hierarchical cooperative navigation of UAV swarm based on federated filtering algorithm[J]. Systems Engineering and Electronics, 2022, 44 (3): 967- 976. | |
5 |
SAMIRA H , ROLAND J , HERMANN H , et al. Edge computing in 5G for drone navigation: what to offload?[J]. IEEE Robotics and Automation Letters, 2021, 6 (2): 2571- 2578.
doi: 10.1109/LRA.2021.3062319 |
6 |
NICULESCU V , LAMBERTI L , CONTI F , et al. Improving autonomous nano-drones performance via automated end-to-end optimization and deployment of DNNs[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11 (4): 548- 562.
doi: 10.1109/JETCAS.2021.3126259 |
7 |
CHHIKARA P , TEKCHANDANI R , KUMAR N , et al. DCNN-GA: a deep neural net architecture for navigation of UAV in indoor environment[J]. IEEE Internet of Things Journal, 2021, 8 (6): 4448- 4460.
doi: 10.1109/JIOT.2020.3027095 |
8 | 宗群, 王丹丹, 邵士凯, 等. 多无人机协同编队飞行控制研究现状及发展[J]. 哈尔滨工业大学学报, 2017, 49 (3): 1- 14. |
ZONG Q , WANG D D , SHAO S K , et al. Research status and development of multi UAV coordinated formation flight control[J]. Journal of Harbin Institute of Technology, 2017, 49 (3): 1- 14. | |
9 |
TEIXEIRA M A S , NEVES-JR F , KOUBAA A , et al. A quadral-fuzzy control approach to flight formation by a fleet of unmanned aerial vehicles[J]. IEEE Access, 2020, 8, 64366- 64381.
doi: 10.1109/ACCESS.2020.2985032 |
10 |
YASIN J N , MOHAMED S A S , HAGHBAYAN M H , et al. Energy-efficient formation morphing for collision avoidance in a swarm of drones[J]. IEEE Access, 2020, 8, 170681- 170695.
doi: 10.1109/ACCESS.2020.3024953 |
11 |
DUNN J , TRON R . Temporal siamese networks for clutter mitigation applied to vision-based quadcopter formation control[J]. IEEE Robotics and Automation Letters, 2021, 6 (1): 32- 39.
doi: 10.1109/LRA.2020.3028056 |
12 |
PARK S , LEE K , SONG H , et al. Low-power, bio-inspired time-stamp-based 2-D optic flow sensor for artificial compound eyes of micro air vehicles[J]. IEEE Sensors Journal, 2019, 19 (24): 12059- 12068.
doi: 10.1109/JSEN.2019.2938559 |
13 |
LEE J , RYU H , KIM H J . Stable flight of a flapping-wing micro air vehicle under wind disturbance[J]. IEEE Robotics and Automation Letters, 2020, 5 (4): 5685- 5692.
doi: 10.1109/LRA.2020.3009064 |
14 |
LEE H , SEO H , KIM H G . Trajectory optimization and replanning framework for a micro air vehicle in cluttered environments[J]. IEEE Access, 2020, 8, 135406- 135415.
doi: 10.1109/ACCESS.2020.3011401 |
15 | 陈飞鹏, 张民. 无人机跟踪地面目标无碰撞航迹规划[J]. 兵工自动化, 2022, 41 (3): 40- 44. |
CHEN F P , ZHANG M . Collision free path planning for UAV tracking ground target[J]. Ordnance Industry Automation, 2022, 41 (3): 40- 44. | |
16 |
SRINIVASA S S , FERGUSON D , HELFRICH C J , et al. HERB: a home exploring robotic butler[J]. Autonomous Robots, 2010, 28 (1): 5- 20.
doi: 10.1007/s10514-009-9160-9 |
17 |
HU S Y , NI W , WANG X , et al. Joint optimization of trajectory, propulsion, and thrust powers for covert UAV-on-UAV video tracking and surveillance[J]. IEEE Trans.on Information Forensics and Security, 2021, 16, 1959- 1972.
doi: 10.1109/TIFS.2020.3047758 |
18 |
XIA Z Y , DU J , WANG J J , et al. Multi-agent reinforcement learning aided intelligent UAV swarm for target tracking[J]. IEEE Trans.on Vehicular Technology, 2022, 71 (1): 931- 945.
doi: 10.1109/TVT.2021.3129504 |
19 | D'AMICO S , BENN M , JORGENSEN J L . Pose estimation of an uncooperative spacecraft from actual space imagery[J]. International Journal of Space Science & Engineering, 2014, 2 (2): 171- 189. |
20 |
ZHU K , ZHANG T . Deep reinforcement learning based mobile robot navigation: a review[J]. Tsinghua Science and Technology, 2021, 26 (5): 674- 691.
doi: 10.26599/TST.2021.9010012 |
21 |
PEREIRA F U , BRASIL P M A , CUADROS A S L , et al. Analysis of local trajectory planners for mobile robot with robot operating system[J]. IEEE Latin America Transactions, 2022, 20 (1): 92- 99.
doi: 10.1109/TLA.2022.9662177 |
22 | ZHANG Y X, WANG C J. Research on robot manipulator servo control based on force and vision sensing[C]//Proc. of the IEEE International Conference on Intelligent Human-machine Systems & Cybernetics, 2013: 52-56. |
23 | 张熠玲, 杨燕, 周威, 等. CMvSC: 知识迁移下的深度一致性多视图谱聚类网络[J]. 软件学报, 2022, 33 (4): 1373- 1389. |
ZHANG Y L , YANG Y , ZHOU W , et al. Knowledge transferring based deep consensus network for multi-view spectral clustering[J]. Journal of Software, 2022, 33 (4): 1373- 1389. | |
24 | KADKHODAMOHAMMADI A, PADOY N. A generalizable approach for multi-view 3D human pose regression[EB/OL]. [2022-06-18]. https://arxiv.org/abs/1804.10462v1. |
25 | 单玉泽. 基于特征融合与在线学习的行人检测算法研究与实现[D]. 南京: 南京邮电大学, 2016. |
SHAN Y Z. Research and implementation of pedestrian detection algorithm based on feature fusion and online learning[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016. | |
26 | MATSUMOTO K, YAMAZAKI K. An object classification framework based on unmeasurable area patterns found in 3D range images[C]//Proc. of the IEEE International Conference on Automation Science and Engineering, 2014: 242-248. |
27 | CHEN C , ZHUANG Y T , NIE F P , et al. Learning a 3D human pose distance metric from geometric pose descriptor[J]. IEEE Trans.on Visualization and Computer Graphics, 2011, 17 (11): 1676- 1689. |
28 | CAO J , HU Y , YU B , et al. 3D aided duet GANs for multi-view face image synthesis[J]. IEEE Trans.on Information Forensics and Security, 2019, 14 (8): 2028- 2042. |
29 | MARTIN J, ANGELINA H, HEREDIA G, et al. Fault detection for autonomous aerial refueling[C]//Proc. of the IEEE Research, Education & Development of Unmanned Aerial Systems, 2016: 92-101. |
30 | WANG Z C , LI Z Q , WANG B , et al. Robot grasp detection using multimodal deep convolutional neural networks[J]. Advances in Mechanical Engineering, 2016, 8 (9): 1687814016668077. |
31 | YANG J D, WANG Q, CONG B, et al. Rocket booster recovery analysis[C]//Proc. of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture, 2020: 420-422. |
32 | 陈维兴, 王琛, 陈斌. 点线融合双目定位与建图多维提升方法[J]. 计算机应用研究, 2022, 39 (3): 956- 960. |
CHEN W X , WANG C , CHEN B . Multi-dimensional improving method for point-line fusion stereo SLAM[J]. Application Research of Computers, 2022, 39 (3): 956- 960. | |
33 | 成禹. 基于双目视觉的多目标识别与定位方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2021. |
CHENG Y. Research on multi-target recognition and localization based on binocular vision[D]. Harbin: Harbin University of Science and Technology, 2021. | |
34 | MA W P , LI W X , CAO P X , et al. Binocular vision object positioning method for robots based on coarse-fine stereo matching[J]. International Journal of Automation and Computing, 2020, 17 (4): 86- 95. |
[1] | Zihan SHEN, Xiubin ZHAO, Chuang ZHANG, Liang ZHANG, Xinxian LIU. Adaptive fault-tolerant method based on long-short term memory neural network [J]. Systems Engineering and Electronics, 2023, 45(3): 831-838. |
[2] | Yunhua RAO, Hualiang ZHU, Zhijie ZHENG. Direct position determination of transmitter based on cooperative target in passive radar [J]. Systems Engineering and Electronics, 2023, 45(2): 394-400. |
[3] | Yanzhi HU, Fengbin ZHANG, Tian TIAN, Qihang CHEN. Multi-UAV-BS layout approach for maximum coverage of users [J]. Systems Engineering and Electronics, 2023, 45(2): 580-588. |
[4] | Shengyang HE, Jiepeng DU, Yaqin ZHAO, Baoying WANG, Liang ZHAO, Longwen WU. TDOA-based cooperative single target location using UAV cluster [J]. Systems Engineering and Electronics, 2023, 45(1): 1-8. |
[5] | Hengyi ZHAN, Yachao LI, Chunfeng WU, Xuan SONG, Tinghao ZHANG. Analytic-iterative positioning method for missile-borne bistatic forward-looking imaging radar [J]. Systems Engineering and Electronics, 2023, 45(1): 71-78. |
[6] | Kun FANG, Xiaohui LI, Tao FAN. High-precision positioning algorithm for UAV based on random forest weight compensation [J]. Systems Engineering and Electronics, 2023, 45(1): 202-209. |
[7] | Xiaowei WANG, Yafeng ZHAN, Haoran XIE, Xi CHEN. A preliminary study on the design of constellation orbiting the moon with the communication and navigation integration [J]. Systems Engineering and Electronics, 2023, 45(1): 241-249. |
[8] | Tianye SUN, Wei SUN, Jianjun WU. UAV formation rapid assembly method based on improved Quatre algorithm [J]. Systems Engineering and Electronics, 2022, 44(9): 2840-2848. |
[9] | Jing YU, Enmi YONG, Hanyang CHEN, Dong HAO, Xiancai ZHANG. Bi-level mission planning method for multi-cooperative UAV air-to-ground attack [J]. Systems Engineering and Electronics, 2022, 44(9): 2849-2857. |
[10] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[11] | Huachao WANG, Jing LIU, Haowen CHENG, Xiyan PENG. Fast star map recognition algorithm based on fuzzy decision [J]. Systems Engineering and Electronics, 2022, 44(5): 1447-1453. |
[12] | Yuanjie LU, Zhimin LIU, Zhixiao SUN, Dong KAN. Model-based integrated evaluation of UAV system architecture [J]. Systems Engineering and Electronics, 2022, 44(4): 1239-1245. |
[13] | Yuanyuan ZHANG, Yang GAO, Peng ZHU, Jintao LIU, Shushan GU. UAV reconnaissance tactical planning based on colored Petri nets [J]. Systems Engineering and Electronics, 2022, 44(3): 900-907. |
[14] | Xuping GU, Daquan TANG. Hierarchical cooperative navigation of UAV swarm based on federated filtering algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 967-976. |
[15] | Xueyong YU, Ye ZHU, Lixiang QIU, Hongbo ZHU. Energy efficient offloading strategy for UAV aided edgecomputing systems [J]. Systems Engineering and Electronics, 2022, 44(3): 1022-1029. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||