Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (8): 2181-2188.doi: 10.12305/j.issn.1001-506X.2021.08.20
• Systems Engineering • Previous Articles Next Articles
Qing DONG1,2, Benwei LI2,*, Siqi YAN2, Renjun QIAN2
Received:
2020-06-25
Online:
2021-07-23
Published:
2021-08-05
Contact:
Benwei LI
CLC Number:
Qing DONG, Benwei LI, Siqi YAN, Renjun QIAN. Prediction of turboshaft engine acceleration process performance parameters based on BSO-ELM[J]. Systems Engineering and Electronics, 2021, 43(8): 2181-2188.
1 | 廉筱纯, 吴虎. 航空发动机原理[M]. 西安: 西北工业大学出版社, 2005. |
LIAN X C , WU H . Principle of aero engine[M]. Xi'an: Northwestern Polytechnical University Press, 2005. | |
2 | 韩文俊, 李家瑞, 王军. 基于实时模型的涡扇发动机加速供油规律设计方法[J]. 航空发动机, 2015, 41 (2): 5- 9. |
HAN W J , LI J R , WANG J , et al. Design method of fuel supply law for turbofan engien acceleration bsaed on a real-time model[J]. Aeroenign, 2015, 41 (2): 5- 9. | |
3 |
ASGARI H , VENTURINI M , CHEN X Q , et al. Modeling and simulation of the transient behavior of an industrial power plant gas turbine[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136 (6): 061601.
doi: 10.1115/1.4026215 |
4 | 郑斐华. 基于系统辨识的航空发动机建模研究[D]. 北京: 中国科学院大学, 2018. |
ZHENG F H. Aeroengine modeling research based on system identification[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
5 | YU B , SHU W J , CAO C . A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks[J]. International Journal of Turbo & Jet-Engines, 2018, 35 (2): 161- 169. |
6 | ASGARI H , CHEN X Q , MENHAJ M B , et al. Artificial neural network-based system identification for a single-shaft gas turbine[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135 (9): 169- 175. |
7 |
王冠超, 杨春, 徐波, 等. 基于改进PSO-SVM参数优化的发动机起动过程辨识[J]. 燃气涡轮试验与研究, 2011, 24 (1): 35- 41.
doi: 10.3969/j.issn.1672-2620.2011.01.007 |
WANG G C , YANG C , XU B , et al. Engine start identification based on parameter optimization of improved PSO-SVM[J]. Gas Turbine Experiment and Research, 2011, 24 (1): 35- 41.
doi: 10.3969/j.issn.1672-2620.2011.01.007 |
|
8 |
ZHOU D , ZHUANG X , ZUO H F , et al. Hazard identification and prediction system for aircraft electrical system based on SRA and SVM[J]. Proceedings of the Institution of Mechanical Engineers, 2020, 234 (4): 1014- 1026.
doi: 10.1177/0954410019894121 |
9 |
BERGHOUT T , MOUSS L H , KADRI O , et al. Aircraft engines remaining useful life prediction with an improved online sequential extreme learning machine[J]. Applied Sciences, 2020, 10 (3): 1062.
doi: 10.3390/app10031062 |
10 | ZHANG S S , LEI D . A dynamic ensemble extreme learning machine model for aircraft engine health condition prediction[J]. Journal of Aerospace Power, 2014, 29 (9): 2085- 2090. |
11 |
耿宏, 任道先, 杜鹏. 基于NARX神经网络航空发动机参数动态辨识模型[J]. 计算机工程与应用, 2017, 53 (12): 241- 248.
doi: 10.3778/j.issn.1002-8331.1601-0268 |
GENG H , REN D X , DU P . Dynamic parameter identification model of aircraft engine based on NARX neural network[J]. Computer Engineering and Applications, 2017, 53 (12): 241- 248.
doi: 10.3778/j.issn.1002-8331.1601-0268 |
|
12 |
ZHENG Q G , ZHANG H B , LI Y J , et al. Aero-engine on-board dynamic adaptive MGD neural network model with-in a large flight envelope[J]. IEEE Access, 2018, 6, 45755- 45761.
doi: 10.1109/ACCESS.2018.2789935 |
13 | 曹惠玲, 王冉. 基于滑动时窗策略自适应优化支持向量机的航空发动机性能参数在线预测[J]. 推进技术, 2020, 41 (8): 1887- 1894. |
CAO H L , WANG R . Adaptively optimized support vector machine onlineprediction of aeroengine performance parameters based on sliding time window strategy[J]. Journal of Propulsion Technology, 2020, 41 (8): 1887- 1894. | |
14 | 皮骏, 黄江博, 黄磊, 等. 基于改进QPSO-SVR的航空发动机排气温度预测[J]. 振动.测试与诊断, 2019, 39 (2): 267- 272, 440. |
PI J , HUANG J B , HUANG L , et al. Aeroengine exhaust gas temperature prediction based on IQPSO-SVR[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39 (2): 267- 272, 440. | |
15 |
HUANG G B , ZHOU H , ZHANG R , et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Trans.on systems, man, and cybernetics, Part B. (Cybernetics), 2012, 42 (2): 513- 529.
doi: 10.1109/TSMCB.2011.2168604 |
16 | 伍恒, 李本威, 张赟, 等. 基于QPSO-ELM的某型涡轴发动机起动过程模型辫识[J]. 航空学报, 2018, 39 (11): 178- 188. |
WU H , LI B W , ZHANG Y , et al. Dynamic model identification of starting process of aturbo-shaft engine based on QPSO-ELM[J]. Acta Aeronauticaet Astronautica Sinica, 2018, 39 (11): 178- 188. | |
17 |
DUAN M X , LI K L , YANG C Q , et al. A hybrid deep learning CNN-ELM for age and gender classification[J]. Neurocomputing, 2018, 275, 448- 461.
doi: 10.1016/j.neucom.2017.08.062 |
18 |
XU Y , ZHANG M Q , YE L , et al. A novel prediction intervals method integrating an error and self-feedback extreme learning machine with particle swarm optimization for energy consumption robust prediction[J]. Energy, 2018, 164, 137- 146.
doi: 10.1016/j.energy.2018.08.180 |
19 |
KARAMI H , KARIMI S , BONAKDARI H , et al. Predicting discharge coefficient of triangular labyrinth weir using extreme learning machine, artificial neural network and genetic programming[J]. Neural Computing and Applications, 2018, 29 (11): 983- 989.
doi: 10.1007/s00521-016-2588-x |
20 |
SHI Y H . An optimization algorithm based on brainstorming process[J]. International Journal of Swarm Intelligence Research, 2011, 2 (4): 35- 62.
doi: 10.4018/ijsir.2011100103 |
21 |
CHENG S , QIN Q D , CHEN J F , et al. Brain storm optimization algorithm: a review[J]. Artificial Intelligence Review, 2016, 46 (4): 445- 458.
doi: 10.1007/s10462-016-9471-0 |
22 | 吴亚丽, 付玉龙, 李国婷, 等. 高维多目标头脑风暴优化算法[J]. 控制理论与应用, 2020, 37 (1): 196- 207. |
WU Y L , FU Y L , LI G T . Many-objective brain storm optimization algorithm[J]. Control Theory and Applications, 2020, 37 (1): 196- 207. | |
23 | 周恒俊. 智能优化算法及其在图像检索中的应用研究[D]. 济南: 山东大学, 2016. |
ZHOU H J. Research on intelligent optimization algorithm and its application in image retrieval[D]. Jinan: Shandong University, 2016. | |
24 | ASGARI H , CHEN X Q , MORINI M , et al. NARX models for simulation of the start-up operation of a single-shaft gas turbine[J]. Applied Thermal Engineering, 2015, 93, 368- 376. |
25 | 樊思齐, 刘清波, 荣向军, 等. 利用飞行试验信号对发动机模型辨识的研究[J]. 航空学报, 1993, 14 (8): 399- 423. |
FAN S Q , LIU Q B , RONG X J . Identification investlgation of engine model using flight test signals[J]. Acta Aeronauticaet Astronautica Sinica, 1993, 14 (8): 399- 423. | |
26 | 陈山, 宋樱, 房胜男, 等. 基于头脑风暴优化算法的Wiener模型参数辨识[J]. 控制与决策, 2017, 32 (12): 2291- 2295. |
CHEN S , SONG Y , FANG S N , et al. Parameter identification of wiener systems using brain storm optimization algorithm[J]. Control and Decision, 2017, 32 (12): 2291- 2295. | |
27 |
LIU J A , PENG H , WU Z J , et al. Multi-strategy brain storm optimization algorithm with dynamic parameters adjustment[J]. Applied Intelligence, 2020, 50 (4): 1289- 1315.
doi: 10.1007/s10489-019-01600-7 |
28 |
ZHANG W Q , ZHANG Y , PENG C . Brain storm optimization for feature selection using new individual clustering and updating mechanism[J]. Applied Intelligence, 2019, 49 (12): 4294- 4302.
doi: 10.1007/s10489-019-01513-5 |
29 | FIGUEIREDO E M N , LUDERMIR T B . Investigating the use of alternative topologies on performance of the PSO-ELM[J]. Neurocomputing, 2014, 12 (7): 4- 12. |
30 | 李明军, 王均星, 王亚洲. 基于改进粒子群优化算法和极限学习机的混凝土坝变形预测[J]. 天津大学学报(自然科学与工程技术版), 2019, 52 (11): 1136- 1144. |
LI M J , WANG J X , WANG Y Z , et al. Deformation prediction of concrete dam based on improved particle swarm optimization algorithm and extreme learning machine[J]. Journal of Tianjin University(Science and Technology), 2019, 52 (11): 1136- 1144. | |
31 |
梁晓萍, 郭振军, 朱昌洪. 基于头脑风暴优化算法的BP神经网络模糊图像复原[J]. 电子与信息学报, 2019, 41 (12): 2980- 2986.
doi: 10.11999/JEIT190261 |
LIANG X P , GUO Z J , ZHU C H , et al. BP neural network fuzzy image restoration based on brain storming optimization algorithm[J]. Journal of Electronics & Information Technology, 2019, 41 (12): 2980- 2986.
doi: 10.11999/JEIT190261 |
|
32 |
PENG J , LI P Z . Research and application of a new hybrid wind speed forecasting model on BSO algorithm[J]. Journal of Energy Engineering, 2017, 143 (1): 04016019.
doi: 10.1061/(ASCE)EY.1943-7897.0000362 |
[1] | Yongqi GAO, Weiqiang MA, Linsen ZHANG, Peng WANG, Miao ZHAO. Distributed multi-AUVs cooperative search method [J]. Systems Engineering and Electronics, 2022, 44(5): 1670-1676. |
[2] | Zhangang YANG, Haiyi XU, Boyuan CHENG, Xudong SHI. Aviation generator eccentricity fault diagnosis based on FWA-DBN [J]. Systems Engineering and Electronics, 2022, 44(5): 1757-1764. |
[3] | Jie ZHANG, Lihua YANG, Qian NIE. Novel time-varying channel prediction method based on stacked ELM [J]. Systems Engineering and Electronics, 2022, 44(2): 662-667. |
[4] | Weiqiang MA, Yongqi GAO, Miao ZHAO. Global-best difference-mutation brain storm optimization algorithm [J]. Systems Engineering and Electronics, 2022, 44(1): 270-278. |
[5] | Xing LIU, Wenshuang WANG, Jianyin ZHAO, Min ZHU. Research on an adaptive online incremental ELM fault diagnosis model [J]. Systems Engineering and Electronics, 2021, 43(9): 2678-2687. |
[6] | Chaowei SHI, Xiangru MENG, Qiaoyan KANG, Yuze SU. Virtual network topology reconfiguration approach based on hybrid traffic prediction [J]. Systems Engineering and Electronics, 2021, 43(5): 1382-1388. |
[7] | Ling YANG, Li CHENG, Qin HAN, Aonan ZHAO. Online blind equalization algorithm using extreme learning machine based on Kalman filter [J]. Systems Engineering and Electronics, 2021, 43(3): 623-630. |
[8] | Xing LIU, Houqing XIONG, Jianyin ZHAO, Min ZHU. State prediction method of online non-stationary dynamic system based on improved sparse KELM [J]. Systems Engineering and Electronics, 2020, 42(9): 2022-2032. |
[9] | Min ZHU, Qi LIU, Xing LIU, Qing XU. Fault detection method for avionics based on LMKL and OC-ELM [J]. Systems Engineering and Electronics, 2020, 42(6): 1424-1432. |
[10] | Chen LI, Jun'an YANG, Hui LIU. Modulation recognition algorithm based on information entropy and GA-ELM [J]. Systems Engineering and Electronics, 2020, 42(1): 223-229. |
[11] | FANG Hao, LI Aihua, PAN Yulong, WANG Xuejin, HE Chuan, WU Yuanjiang. Evaluation for infrared scene simulation based on self-learning framework [J]. Systems Engineering and Electronics, 2019, 41(2): 266-272. |
[12] | SHI Weiguo, XU Chao. Time delay prediction based on phase space reconstruction and robust extreme learning machine [J]. Systems Engineering and Electronics, 2019, 41(2): 416-421. |
[13] | XU Ximeng, YANG Rennong, FU Ying, ZHAO Yu. Target threat assessment in air combat based on ELM_AdaBoost strong predictor [J]. Systems Engineering and Electronics, 2018, 40(8): 1760-1768. |
[14] | ZHANG Dongdong, SUN Rui, GAO Jun. Target tracking algorithm based on extreme learning machine and multiple kernel boosting learning [J]. Systems Engineering and Electronics, 2017, 39(9): 2149-2156. |
[15] | ZHANG Wei, XU Aiqiang, PING Dianfa. Nonlinear system online identification based on kernel sparse learning#br# algorithm with adaptive regulation factor [J]. Systems Engineering and Electronics, 2017, 39(1): 223-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||