Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (8): 2174-2180.doi: 10.12305/j.issn.1001-506X.2021.08.19
• Systems Engineering • Previous Articles Next Articles
Gang YANG, Xusheng WU, Pan SUN*, Hao ZHU, Sheng XIONG
Received:
2020-08-15
Online:
2021-08-01
Published:
2021-08-05
Contact:
Pan SUN
CLC Number:
Gang YANG, Xusheng WU, Pan SUN, Hao ZHU, Sheng XIONG. Partition of line replaceable units in complex equipment based on performance[J]. Systems Engineering and Electronics, 2021, 43(8): 2174-2180.
Table 5
Matrix of functional correlation"
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 1 | 0.9 | 0.9 | 0.2 | 0.9 | 0 | 0.9 | 0.7 | 0.7 | 0.7 | 0 |
2 | 0.9 | 1 | 0.9 | 0.8 | 0.9 | 0.9 | 0.1 | 0.9 | 0.6 | 0.7 | 0 |
3 | 0.9 | 0.9 | 1 | 0.2 | 0.9 | 0.9 | 0.9 | 0.5 | 0 | 0 | 0 |
4 | 0.2 | 0.8 | 0.2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0.9 | 0.9 | 0.9 | 0 | 1 | 0 | 0.9 | 0 | 0 | 0 | 0 |
6 | 0 | 0.9 | 0.9 | 0 | 0 | 1 | 0.5 | 0 | 0 | 0.2 | 0 |
7 | 0.9 | 0.1 | 0.9 | 0 | 0.9 | 0.5 | 1 | 0 | 0 | 0.6 | 0 |
8 | 0.7 | 0.9 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0 | 0.9 | 0 |
9 | 0.7 | 0.6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.9 | 0 |
10 | 0.7 | 0.7 | 0 | 0 | 0 | 0.2 | 0.6 | 0.9 | 0.9 | 1 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Table 6
Matrix of behavioral correlation"
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0.5 | 0 | 0 |
3 | 0 | 1 | 1 | 0 | 0 | 0 | 0.5 | 0.5 | 0 | 0.5 | 0 |
4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 0 | 0 | 0 | 1 | 1 | 0.5 | 0 | 0 | 0 | 0 |
6 | 1 | 0 | 0 | 0 | 1 | 1 | 0.5 | 0 | 0 | 0 | 0 |
7 | 0 | 1 | 0.5 | 0 | 0.5 | 0.5 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 1 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0 | 0.5 | 0 |
9 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
10 | 0 | 0 | 0.5 | 0 | 0 | 0 | 0 | 0.5 | 0 | 1 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Table 7
Matrix of structural correlation"
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 1 | 1 | 0 | 0 | 0.8 | 0 | 0.6 | 0 | 1 | 0 |
4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 1 | 0.6 | 0.6 | 0 | 0 | 0.2 | 0.2 |
6 | 0 | 0 | 0.8 | 0 | 0.6 | 1 | 0 | 0 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 0 | 0.6 | 0 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0.6 | 0 | 0 | 0 | 0 | 1 | 0 | 0.3 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
10 | 0 | 0 | 1 | 0 | 0.2 | 0 | 0 | 0.3 | 0 | 1 | 0 |
11 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 | 0 | 0 | 1 |
Table 8
Matrix of comprehensive correlation"
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 1 | 0.4 | 0.4 | 0.1 | 0.6 | 0.2 | 0.8 | 0.3 | 0.3 | 0.3 | 0 |
2 | 0.4 | 1 | 0.9 | 0.9 | 0.4 | 0.4 | 0.2 | 0.6 | 0.3 | 0.3 | 0 |
3 | 0.4 | 0.9 | 1 | 0.1 | 0.4 | 0.7 | 0.5 | 0.5 | 0 | 0.5 | 0 |
4 | 0.1 | 0.9 | 0.1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0.6 | 0.4 | 0.4 | 0 | 1 | 0.4 | 0.7 | 0 | 0 | 0.1 | 0.1 |
6 | 0.2 | 0.4 | 0.7 | 0 | 0.4 | 1 | 0.3 | 0 | 0 | 0.1 | 0 |
7 | 0.8 | 0.2 | 0.5 | 0 | 0.7 | 0.3 | 1 | 0 | 0 | 0.3 | 0 |
8 | 0.3 | 0.6 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0 | 0.6 | 0 |
9 | 0.3 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.4 | 0 |
10 | 0.3 | 0.3 | 0.5 | 0 | 0.1 | 0.1 | 0.3 | 0.6 | 0.4 | 1 | 0 |
11 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 1 |
Table 9
Matrix of fuzzy equivalence"
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 1 | 0.5 | 0.5 | 0.5 | 0.7 | 0.5 | 0.8 | 0.5 | 0.4 | 0.5 | 0.1 |
2 | 0.5 | 1 | 0.9 | 0.9 | 0.5 | 0.7 | 0.5 | 0.6 | 0.4 | 0.6 | 0.1 |
3 | 0.5 | 0.9 | 1 | 0.9 | 0.5 | 0.7 | 0.5 | 0.6 | 0.4 | 0.6 | 0.1 |
4 | 0.5 | 0.9 | 0.9 | 1 | 0.5 | 0.7 | 0.5 | 0.6 | 0.4 | 0.6 | 0.1 |
5 | 0.7 | 0.5 | 0.5 | 0.5 | 1 | 0.5 | 0.7 | 0.5 | 0.4 | 0.5 | 0.1 |
6 | 0.5 | 0.7 | 0.7 | 0.7 | 0.5 | 1 | 0.5 | 0.6 | 0.4 | 0.6 | 0.1 |
7 | 0.8 | 0.5 | 0.5 | 0.5 | 0.7 | 0.5 | 1 | 0.5 | 0.4 | 0.5 | 0.1 |
8 | 0.5 | 0.6 | 0.6 | 0.6 | 0.5 | 0.6 | 0.5 | 1 | 0.4 | 0.6 | 0.1 |
9 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 1 | 0.4 | 0.1 |
10 | 0.5 | 0.6 | 0.6 | 0.6 | 0.5 | 0.6 | 0.5 | 0.6 | 0.4 | 1 | 0.1 |
11 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1 |
Table 10
Preliminary partition scheme of LRU"
方案编号 | 阈值α | 系统组成 |
1 | 0.1 | (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) |
2 | 0.4 | (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)(11) |
3 | 0.5 | (1, 2, 3, 4, 5, 6, 7, 8, 10)(9)(11) |
4 | 0.6 | (1, 5, 7)(2, 3, 4, 6, 8, 10)(9)(11) |
5 | 0.7 | (2, 3, 4, 6)(1, 5, 7)(8)(9)(10)(11) |
6 | 0.8 | (2, 3, 4)(1, 7)(5)(6)(8)(9)(10)(11) |
7 | 0.9 | (1)(2, 3, 4)(5)(6)(7)(8)(9)(10)(11) |
8 | 1 | (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11) |
1 | 蒋思远. 现场可更换单元划分及优化方法研究[D]. 长沙: 国防科学技术大学, 2018. |
JIANG S Y. Research on division and optimization of line replaceable units[D]. Changsha: National University of Defense Technology, 2018. | |
2 |
郭志明, 王丹, 刘瑛, 等. 现场可更换单元划分权衡研究综述[J]. 兵器装备工程学报, 2018, 39 (8): 11- 14.
doi: 10.11809/bqzbgcxb2018.08.003 |
GUO Z M , WANG D , LIU Y , et al. Overview on partition of line replaceable unit[J]. Journal of Ordnance Equipment Engineering, 2018, 39 (8): 11- 14.
doi: 10.11809/bqzbgcxb2018.08.003 |
|
3 |
UNGAR L Y . Testability design prevents harm[J]. Aerospace and Electronic Systems Magazine, 2010, 25 (3): 35- 43.
doi: 10.1109/MAES.2010.5463955 |
4 |
SAEED S M , SINANOGLU O . Design for testability support for launch and capture power reduction in launch-off-shift and launch-off-capture testing[J]. IEEE Trans.on Very Large Scale Integration Systems, 2014, 22 (3): 516- 521.
doi: 10.1109/TVLSI.2013.2248764 |
5 | KHAN S , PHILLIPS P , JENNIONS I , et al. No fault found events in maintenance engineering part 1: current trends, implications and organizational practices[J]. Reliability Engineering & System Safety, 2014, 123, 183- 195. |
6 |
LANGLOIS R N , ROBERTSONP . Networks and innovation in a modular system: lessons from the microcomputer and stereo component industries[J]. Strategic Management Journal, 1992, 13, 111- 125.
doi: 10.1002/smj.4250131009 |
7 |
ERIXON G , YXKULLB A V , ARNSTR MC A . Modularity the basis for product and factory reengineering[J]. CIRP Annals-Manufacturing Technology, 1996, 45 (1): 1- 6.
doi: 10.1016/S0007-8506(07)63005-4 |
8 | TSAIA Y T , WANGB K S . The development of modular-based design in considering technology complexity[J]. European Journal of Operational Research, 1999, 119 (1): 692- 703. |
9 |
WEI W , ANG L , STEPHEN C , et al. Amuti-principle module identification method for product platform design[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2015, 16 (1): 1- 10.
doi: 10.1631/jzus.A1400263 |
10 |
TSENG H E , CHANG CC , LI J D . Modular design to support green life-cycle engineering[J]. Expert Systems with Applications, 2008, 34 (4): 2524- 2537.
doi: 10.1016/j.eswa.2007.04.018 |
11 |
PUIG J E P , BASTEN R J I . Defining line replaceable units[J]. European Journal of Operational Research, 2015, 247 (1): 310- 320.
doi: 10.1016/j.ejor.2015.05.065 |
12 | BASTEN R J I , HEIJDEN M C V D , SCHUTTEN J M J . A minimum cost flow model for level of repair analysis[J]. International Journal of Production Economics, 2017, 133 (1): 233- 242. |
13 |
GUTIN G , RAFIEY A , YEO A . Level of repair analysis and minimum cost homomorphisms of graphs[J]. Discrete Applied Mathematics, 2006, 154 (6): 881- 889.
doi: 10.1016/j.dam.2005.06.012 |
14 |
BARROS L , RILEY M . A combinatorial approach to level of repair analysis[J]. European Journal of Operational Research, 2001, 129 (2): 242- 251.
doi: 10.1016/S0377-2217(00)00221-6 |
15 | ZHOU D , JIA X , LIY X . RMS-oriented method of LRU design[J]. Advanced Materials Research, 2012, 538, 3119- 3124. |
16 | 张策. 面向RMS的LRU规划设计[D]. 北京: 北京航空航天大学, 2006. |
ZHANG C. RMS-oriented LRU planning[D]. Beijing: Beihang University, 2006. | |
17 | 张磊, 王保青, 李军. 舰船通用质量特性设计分析研究[J]. 船舶, 2019, 30 (5): 96- 104. |
ZHANG L , WANG B Q , LI J . Design and analysis of ship common quality characteristics[J]. Ship & Boat, 2019, 30 (5): 96- 104. | |
18 | SUH N P . Axiomatic design: advances and applications[M]. NewYork: Oxford University Press, 2001. |
19 |
ERDEN M S , KOMOTO H , VAN B T J , et al. A review of function modeling: approaches and applications[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 2008, 22 (2): 147- 169.
doi: 10.1017/S0890060408000103 |
20 |
VAN B T J , ERDEN M S , TOMIYAMA T . Modular design of mechatronic systems with function modeling[J]. Mechatronics, 2010, 20 (8): 850- 863.
doi: 10.1016/j.mechatronics.2010.02.002 |
21 | QIAN L , GERO J S . Function-behavior-structure paths and their role in analogy-based design[J]. AI for Engineering Design, 1996, 10 (4): 289- 312. |
22 |
龚京忠, 李国喜, 邱静. 基于功能-行为-结构的产品概念模块设计研究[J]. 计算机集成制造系统, 2006, 12 (12): 1921- 1927.
doi: 10.3969/j.issn.1006-5911.2006.12.001 |
GONG J Z , LI G X , QIU J . FBS-based product conceptual module design[J]. Computer Integrated Manufacturing Systems, 2006, 12 (12): 1921- 1927.
doi: 10.3969/j.issn.1006-5911.2006.12.001 |
|
23 |
UMEDA Y , ISHII M , YOSHIOKA M , et al. Supporting conceptual design based on thefunction-behavior-state modeler[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1996, 10 (4): 275- 288.
doi: 10.1017/S0890060400001621 |
24 | SABAHA F . Function-behavior-structure model of design: an alternative approach[J]. International Journal of Advanced Computer Science and Applications, 2016, 7 (7): 133- 138. |
25 | SAATYT L . How to make a decision: analytic hierarchy process[J]. Interfaces, 1994, 48 (1): 9- 26. |
26 | 滕晓艳. 复杂产品系统的模块划分方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. |
TENG X Y. Research onmodule partition method of CoPS[D]. Harbin: Harbin Engineering University, 2011. | |
27 | XU Y Q, XIONG L H, WANG Y F. Themethod of module partition for product family structure with applications[C]//Proc. of the International Conference on Service Operations & Logistics, 2006. |
28 | QIAN X. Environmental analysis model for modular design of electromechanical products[D]. Texas: Texas Technology University, 2003. |
29 |
NEPAL B P , MONPLAISIR L , SINGH N . A methodology for integrating design for quality in modular product design[J]. Journal of Engineering Design, 2006, 17 (5): 387- 409.
doi: 10.1080/09544820500275081 |
30 |
韦娜娜, 王平安, 王震, 等. 电子信息装备维修LRU划分综合影响因素的研究[J]. 电子器件, 2020, 43 (4): 918- 921.
doi: 10.3969/j.issn.1005-9490.2020.04.040 |
WEI N N , WANG P A , WANG Z , et al. Study on comprehensive influencing factors of LRU division of electronic information equipment maintenance[J]. Chinese Journal of Electron Devices, 2020, 43 (4): 918- 921.
doi: 10.3969/j.issn.1005-9490.2020.04.040 |
[1] | Jianfeng YANG, Heye XIAO, Liang LI, Junqiang BAI, Weihao DONG. Multi-level module partition method of UAV based on fuzzy clustering and expert scoring mechanism [J]. Systems Engineering and Electronics, 2022, 44(8): 2530-2539. |
[2] | Enzhi DONG, Zhonghua CHENG, Rongcai WANG. Combined maintenance strategy of complex two-dimensional warranty equipment considering economic dependence [J]. Systems Engineering and Electronics, 2022, 44(7): 2219-2228. |
[3] | Hongzhuan CHEN, Aijia ZHAO, Tengjiao LI, Congcong CAI, Shuo CHENG, Chunli XU. Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree [J]. Systems Engineering and Electronics, 2021, 43(5): 1248-1261. |
[4] | TANG Weiqiang, LONG Wenkun, SUN Lijuan, HUANG Xiaoli. Multiple model adaptive control of nonlinear systems based on clustering method and neural network [J]. Systems Engineering and Electronics, 2019, 41(9): 2100-2106. |
[5] | LIU Zan, CHEN Xihong, LIU Jin, LIU Qiang. Source number estimation method based on fuzzy C-means clustering [J]. Systems Engineering and Electronics, 2019, 41(2): 244-248. |
[6] | WAN Liangqi, CHEN Hongzhuan, OUYANG Linhan, ZHANG Di, LI Yaping. Multi-quality characteristics robust optimization design based on grey-PCE for complex equipment products [J]. Systems Engineering and Electronics, 2018, 40(2): 472-481. |
[7] | WANG Ying, SUN Yun, MENG Xiangfei, QI Yao, LI Chao. Research on risk transfer GERT of complex equipment systems based on opportunity theory#br# [J]. Systems Engineering and Electronics, 2018, 40(12): 2707-2713. |
[8] | WANG Yongpan, YANG Jiangping, DENG Xiang, HOU Xiaodong. Assessment model of complex equipment maintenance quality based on Bayesian network [J]. Systems Engineering and Electronics, 2017, 39(3): 569-576. |
[9] | ZHU Yuan-chang, CHEN Zhi-jia, DI Yan-qiang, FENG Shao-chong. Resource prediction scheduling method in IaaS mode “cloud training” [J]. Systems Engineering and Electronics, 2016, 38(2): 323-331. |
[10] | LIU Hong-qi1,2, FANG Zhi-geng1,2, TAO Liang-yan1,2. Complex equipment development project planning GERT network “inverse problem” model [J]. Systems Engineering and Electronics, 2015, 37(12): 2758-2763. |
[11] | BI Kai, WANG Xiaodan, XING Yaqiong. Fuzzy clustering ensemble based on D-S theory [J]. Systems Engineering and Electronics, 2014, 36(7): 1446-1452. |
[12] | ZHOU Shi-bo, XU Wei-xiang, CHAI Tian. Data weighted fuzzy C means clustering algorithm [J]. Systems Engineering and Electronics, 2014, 36(11): 2314-2319. |
[13] |
WANG Li-na, WANG Jian-dong, LI Tao, YE Feng.
Cluster’s feature weighting fuzzy clustering algorithm integrating rough sets and shadowed sets [J]. Journal of Systems Engineering and Electronics, 2013, 35(8): 1769-1776. |
[14] | FAN Cheng-li, XING Qing-hua, FU Qiang, FAN Xuan-yuan. Technique for target recognition in ballistic midcourse based on intuitionistic fuzzy kernel clustering [J]. Journal of Systems Engineering and Electronics, 2013, 35(7): 1362-1367. |
[15] | Chen Jia-shun, Pi De-chang. Improved fuzzy possibilistic c-means model based on quadratic distance [J]. Journal of Systems Engineering and Electronics, 2013, 35(7): 1547-1553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||