

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 3924-3934.doi: 10.12305/j.issn.1001-506X.2025.12.18
• “基于模型的系统架构设计与验证技术”专栏 • 上一篇
收稿日期:2025-03-03
修回日期:2025-06-13
出版日期:2025-11-28
发布日期:2025-11-28
通讯作者:
张鹏
E-mail:baiyifan@csu.ac.cn;zhangpeng@csu.ac.cn
作者简介:白一帆(1992—),男,工程师,硕士,主要研究方向为基于模型的系统工程基金资助:
Yifan BAI(
), Peng ZHANG(
), Xiaochun HUO, Wei DAI, Wenju YANG
Received:2025-03-03
Revised:2025-06-13
Online:2025-11-28
Published:2025-11-28
Contact:
Peng ZHANG
E-mail:baiyifan@csu.ac.cn;zhangpeng@csu.ac.cn
摘要:
装备工程研制广泛推行基于模型的系统工程(model-based systems engineering, MBSE)模式,但由于建模门槛高、缺乏协同机制,导致大范围推广难度较大。因此,以产品生命周期管理系统作为服务平台,研究MBSE协同实践应用。首先,提出正向分解和设计汇总结合的协同设计MBSE业务流程。之后,设计元模型,通过元模型-构型定义-实例数据支持跨层级协同设计。然后,提出数字模型应用服务方法,为模型用户降低使用门槛。最后,完成产品生命周期管理原型开发,以航天器设计作为案例,验证本方法的适用性。结果表明,产品全生命周期管理系统可以支持多类角色依托模型开展协同设计与仿真验证,通过数字模型服务的方式降低模型使用门槛,具备较强的应用参考价值。
中图分类号:
白一帆, 张鹏, 霍晓春, 代巍, 杨文举. MBSE与PLM融合的系统总体协同设计实践应用研究[J]. 系统工程与电子技术, 2025, 47(12): 3924-3934.
Yifan BAI, Peng ZHANG, Xiaochun HUO, Wei DAI, Wenju YANG. Research for MBSE and PLM integration in system overall co-design practical application[J]. Systems Engineering and Electronics, 2025, 47(12): 3924-3934.
| 1 |
AKUNDI A, LOPEZ V. A review on application of model based systems engineering to manufacturing and production engineering systems[J]. Procedia Computer Science, 2021, 185, 101- 108.
doi: 10.1016/j.procs.2021.05.011 |
| 2 | 邓昱晨, 毛寅轩, 卢志昂, 等. 基于模型的系统工程的应用及发展[J]. 科技导报, 2019, 37 (7): 49- 54. |
| DENG Y C, MAO Y X, LU Z A, et al. Analysis of the development of model-based systems engineering application[J]. Science & Technology Review, 2019, 37 (7): 49- 54. | |
| 3 | RYAN M, COOK S, SCOTT W. Application of MBSE to requirements engineering-research challenges[C]//Proc. of the Systems Engineering/Test and Evaluation Conference, 2013. |
| 4 | SAVARY-LEBLANC M, LE-PALLEC X, GERARD S. A modeling assistant for cognifying MBSE tools[C]//Proc. of the ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion, 2021: 630−634. |
| 5 | 王翔, 甘娥忠, 陆欣, 等. 基于MBSE的复杂装备数字化质量管理模式研究[J]. 质量与可靠性, 2023 (6): 28- 34. |
| WANG X, GAN E Z, LU X, et al. Research on digital quality management mode of complex equipment based on MBSE[J]. Quality and reliability, 2023 (6): 28- 34. | |
| 6 |
范海涛, 吴紫薇, 张亮, 等. 航天器MBSE应用与标准化实践[J]. 航天标准化, 2023 (3): 20- 23.
doi: 10.3969/j.issn.1009-234X.2023.03.005 |
|
FAN H T, WU Z W, ZHANG L, et al. Application and standardization practice of model-based systems engineering in spacecraft[J]. Aerospace Standardization, 2023 (3): 20- 23.
doi: 10.3969/j.issn.1009-234X.2023.03.005 |
|
| 7 |
MADARIAGA C, BASHIR A, SWICKLINE C. Applying MBSE in space based systems development[J]. INCOSE International Symposium, 2023, 33 (1): 584- 600.
doi: 10.1002/iis2.13040 |
| 8 |
SWICKLINE C, JUGOVIC H. A data-centric system architecture model development process emphasizing rapid tempo and quality[J]. INCOSE International Symposium, 2022, 32 (1): 857- 871.
doi: 10.1002/iis2.12968 |
| 9 |
王为, 彭坤. MBSE技术在我国载人航天器研制中的应用[J]. 航天器工程, 2022, 31 (6): 69- 75.
doi: 10.3969/j.issn.1673-8748.2022.06.010 |
|
WANG W, PENG K. Application of MBSE technology in development of China manned spacecraft[J]. Spacecraft Engineering, 2022, 31 (6): 69- 75.
doi: 10.3969/j.issn.1673-8748.2022.06.010 |
|
| 10 |
HEDBERG T D, BAJAJ M, CAMELIO J A. Using graphs to link data across the product lifecycle for enabling smart manufacturing digital threads[J]. Journal of Computing and Information Science in Engineering, 2020, 20 (1): 011011.
doi: 10.1115/1.4044921 |
| 11 | 鲁金直, 王国新, 张旸旸, 等. 基于模型的系统工程统一架构建模语言的标准体系构建[J]. 信息技术与标准化, 2024 (1): 22- 27,53. |
| LU J Z, WANG G X, ZHANG Y Y, et al. Standard system construction of model-based systems engineering unified architecture modeling language[J]. Information Technology & Standardization, 2024 (1): 22- 27,53. | |
| 12 | 兰小平, 姚志强, 吴绶玄, 等. 面向MBSE的复杂系统研发模型追溯管理方法[J]. 系统工程学报, 2023, 38 (3): 289- 303. |
| LAN X P, YAO Z Q, WU S Q, et al. Traceability management approach for complex system development based on MBSE[J]. Journal of Systems Engineering, 2023, 38 (3): 289- 303. | |
| 13 | VINARCIK M. Treadstone: a process for improving modeling prowess using validation rules[C]//Proc. of the ASEE Annual Conference and Exposition, 2020. |
| 14 | WALDRAM N, CORNFORD S. Pathfinding model-based mission assurance: S&MA representation & interaction within MBSE[C]//Proc. of the IEEE Aerospace Conference, 2020. |
| 15 | LIU Z N, XUE J J, ZHOU J H, et al. Design and research of updating system based on OpenMBEE online data model library[C]//Proc. of the China Automation Congress, 2021: 6797−6800. |
| 16 | KARBAN R, ROBERTSON R, QAMAR A, et al. Preface to the OpenMBEE International Workshop[C]//Proc. of the ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion, 2021. |
| 17 |
涂歆滢, 杨雷. 国外航天器协同设计中心现状分析[J]. 航天器工程, 2009, 18 (1): 83- 88.
doi: 10.3969/j.issn.1673-8748.2009.01.014 |
|
XU X Y, YANG L. Overview of satellite concurrent design center[J]. Spacecraft Engineering, 2009, 18 (1): 83- 88.
doi: 10.3969/j.issn.1673-8748.2009.01.014 |
|
| 18 |
DONALD W M, WILLIAN M P. Aerospace system design in NASA’s collaborative engineering environment[J]. Acta Astronautica, 2000, 47 (2/9): 255- 264.
doi: 10.1016/S0094-5765(00)00065-5 |
| 19 |
邓丽, 杨震, 彭晓东. 空间任务概念设计阶段的协同工作环境[J]. 无线电工程, 2016, 46 (6): 1- 4,12.
doi: 10.3969/j.issn.1003-3106.2016.06.01 |
|
DENG L, YANG Z, PENG X D. Concurrent working environment for space mission concept design phase[J]. Radio Engineering, 2016, 46 (6): 1- 4,12.
doi: 10.3969/j.issn.1003-3106.2016.06.01 |
|
| 20 | 邓丽, 韩潮, 曹晋滨, 等. 空间科学任务协同设计论证平台[J]. 北京航空航天大学学报, 2015, 41 (4): 601- 608. |
| DENG L, HAN C, CAO J B, et al. Demonstration platform for collaborative design of space science missions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41 (4): 601- 608. | |
| 21 |
关锋, 葛平, 周国栋, 等. MBSE发展趋势与中国探月工程并行协同论证[J]. 空间科学学报, 2022, 42 (2): 183- 190.
doi: 10.11728/cjss2022.02.210804082 |
|
GUAN F, GE P, ZHOU G D, et al. Trend of MBSE and investigation of concurrent collaborative demonstration for Chinese lunar exploration program[J]. Chinese Journal of Space Science, 2022, 42 (2): 183- 190.
doi: 10.11728/cjss2022.02.210804082 |
|
| 22 | TIMPERLEY L, BERTHOUD L, SNIDER C, et al. Towards improving the design space exploration process using generative design with MBSE[C]//Proc. of the IEEE Aerospace Conference, 2023. |
| 23 |
LI H, LACHMAYER R. Automated exploration of design solution space applying the generative design approach[J]. Proceedings of the Design Society: International Conference on Engineering Design, 2019, 1 (1): 1085- 1094.
doi: 10.1017/dsi.2019.114 |
| 24 |
LESERF P, SAQUI-SANNES P D, HUGUES J. Trade-off analysis for SysML models using decision points and CSPs[J]. Software and Systems Modeling, 2019, 18, 3265- 3281.
doi: 10.1007/s10270-019-00717-0 |
| 25 | HUMMELL J, HAUSE M. Model-based product line engineering-enabling product families with variants[C]//Proc. of the IEEE Aerospace Conference, 2015. |
| 26 | DAMIR B. Managing variability in SysML models of automotive systems[D]. Vasteras: Malardalen University, 2020. |
| 27 | 孙志权, 杨涛, 焦鉴. 一种基于元模型进行系统工程数字化建模系统及方法[P]. 中国: CN115617805B, 2023−05−02. |
| SUN Z Q, YANG T, JIAO J. A digital modeling system and method for system engineering based on meta model[P]. China: CN115617805B, 2023−05−02. | |
| 28 |
UZUN B, TEKINERDOGAN B. Model-driven architecture based testing: a systematic literature review[J]. Information and Software Technology, 2018, 102, 30- 48.
doi: 10.1016/j.infsof.2018.05.004 |
| 29 | ISO/IEC 19508. OMG meta object facility (MOF) core specification[S]. Geneva: International Organization for Standardization, 2014. |
| 30 | CADAVID J, COMBEMALE B, BAUDRY B. An analysis of metamodeling practices for MOF and OCL [J]. Computer Languages, Systems & Structures, 2015, 41: 42−65. |
| [1] | 孟庆春, 杜非, 王彪, 张芹, 韩汶, 徐畅. 基于MBSE的危化品车辆监控预警系统设计[J]. 系统工程与电子技术, 2025, 47(7): 2224-2236. |
| [2] | 李特, 郭强, 战鹏. 基于MBSE的异构探测器系统架构设计方法[J]. 系统工程与电子技术, 2025, 47(6): 1930-1940. |
| [3] | 崔馨方, 陈祥文. MBSE在载人航天在轨物资补给任务中的应用[J]. 系统工程与电子技术, 2025, 47(5): 1551-1560. |
| [4] | 鲁金直, 王国新, 唐锡晋, 唐俊杰, 温跃杰, 唐剑, 张旸旸, 兰小平, 刘奇, 李俊霖, 马君达, 吴绶玄, 胡晓度. 面向空间智能的基于模型的系统工程方法[J]. 系统工程与电子技术, 2025, 47(12): 3877-3889. |
| [5] | 龚逸辉, 王国新, 阎艳, 吴绶玄, 董梦如, 袁永吉. 基于模型的系统工程中的架构模型质量综述:概念、框架和技术[J]. 系统工程与电子技术, 2025, 47(12): 3890-3900. |
| [6] | 陈成, 张祥瑞, 杨中源, 周华伟, 何秦, 韩灿. 基于DoDAF的舰船实战化需求建模与分析方法[J]. 系统工程与电子技术, 2025, 47(10): 3389-3400. |
| [7] | 王乾, 郑党党, 佟瑞庭, 韩冰, 杨小辉. 基于MBSE的民机飞行控制系统架构设计[J]. 系统工程与电子技术, 2024, 46(9): 3050-3059. |
| [8] | 陈志兵, 邬恒, 罗战虎, 王建国. 基于MBSE的对流层飞艇运行概念研究[J]. 系统工程与电子技术, 2024, 46(3): 1004-1012. |
| [9] | 董梦如, 王国新, 鲁金直, 马君达, 阎艳. 基于WordCloud技术的MBSE发展态势研究[J]. 系统工程与电子技术, 2024, 46(2): 534-548. |
| [10] | 苗学问, 董骁雄, 钱征文, 胡杨, 李牧东. 基于DoDAF的航空装备智能保障系统体系结构建模[J]. 系统工程与电子技术, 2024, 46(2): 640-648. |
| [11] | 戚亚群, 金平, 彭祺擘, 张海联, 蔡国飙. 基于模型的推进系统故障识别及建模方法[J]. 系统工程与电子技术, 2024, 46(12): 4062-4073. |
| [12] | 朱景璐, 朱野, 李立, 郑轲. 基于MBSE的卫星能源系统设计与验证[J]. 系统工程与电子技术, 2024, 46(11): 3807-3819. |
| [13] | 罗睿, 黄今辉, 王双双, 孔德照. 复杂软件系统双向耦合论证设计方法[J]. 系统工程与电子技术, 2024, 46(10): 3451-3461. |
| [14] | 任浩亮, 张建超, 程会川. 基于SysML的武器装备体系能力需求建模分析方法[J]. 系统工程与电子技术, 2023, 45(9): 2843-2851. |
| [15] | 黄冉, 彭祺擘, 武新峰, 倪庆. 基于DoDAF的载人登月体系结构建模[J]. 系统工程与电子技术, 2023, 45(7): 2131-2137. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||