

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 3912-3923.doi: 10.12305/j.issn.1001-506X.2025.12.17
• “基于模型的系统架构设计与验证技术”专栏 • 上一篇
潘如江1,2(
), 陈炯毅1,2, 王剑波3, 方哲梅1,2,*(
)
收稿日期:2025-03-03
修回日期:2025-06-05
出版日期:2025-11-28
发布日期:2025-11-28
通讯作者:
方哲梅
E-mail:m202473821@hust.edu.cn;zmfang2018@hust.edu.cn
作者简介:潘如江(2002—),男,硕士研究生,主要研究方向为系统建模与仿真分析、体系效能评估基金资助:
Rujiang PAN1,2(
), Jiongyi CHEN1,2, Jianbo WANG3, Zhemei FANG1,2,*(
)
Received:2025-03-03
Revised:2025-06-05
Online:2025-11-28
Published:2025-11-28
Contact:
Zhemei FANG
E-mail:m202473821@hust.edu.cn;zmfang2018@hust.edu.cn
摘要:
当前系统/体系架构视图建模高度依赖于业务经验,建模过程的繁琐及其巨大的工作量是阻碍系统/体系架构设计方法落地的重要原因。为加快架构视图模型构建速度并降低建模工作量,围绕系统建模语言(system modeling language, SysML),提出一种基于大语言模型的视图模型自动生成方法,以实现系统架构智能辅助设计。该方法解析架构视图模型的可扩展标记语言(extensible markup language,XML)数据,构建基于RAGFlow框架的本地知识库,牵引大模型生成满足建模任务的XML数据,并设计基于DOM4J框架的转换算法以形成适配SysML范式的XML模型,由此实现SysML模型的自动构建。关注块定义图、内部块图以及活动图,以无人潜航器为例,实现SysML视图模型生成,后续引入相关指标验证视图模型的有效性和准确性,结果表明所提方法能够有效地生成基于SysML的系统架构视图模型。
中图分类号:
潘如江, 陈炯毅, 王剑波, 方哲梅. 基于大语言模型的系统架构视图智能建模方法[J]. 系统工程与电子技术, 2025, 47(12): 3912-3923.
Rujiang PAN, Jiongyi CHEN, Jianbo WANG, Zhemei FANG. Intelligent modeling method of system architecture view based on large language model[J]. Systems Engineering and Electronics, 2025, 47(12): 3912-3923.
| 1 | International Council on Systems Engineering. Systems engineering vision 2035[EB/OL]. [2025-03-03]. https://www.incose.org/publications/se-vision-2035. |
| 2 |
KIRSHNER M, VALERDI R. Integrating model-based systems and digital engineering for crewed Mars mission planning[J]. Journal of Aerospace Information Systems, 2022, 19 (10): 668- 676.
doi: 10.2514/1.I010986 |
| 3 |
MITCHELL S W. Transitioning the SWFTS program combat system product family from traditional document-centric to model-based systems engineering[J]. Systems Engineering, 2014, 17 (3): 313- 329.
doi: 10.1002/sys.21271 |
| 4 | MEIXSEL R B. Frustrated ambition: General Vicente Lim and the Philippine military experience, 1910–1944[J]. Journal of American History, 2019, 106(1): 232−233. |
| 5 |
DEHARTK J. Leveraging large language models for direct interaction with SysML v2[J]. INCOSE International Symposium, 2024, 34 (1): 2168- 2185.
doi: 10.1002/iis2.13262 |
| 6 |
LIU S J, YAO Y S, JIA J H, et al. Rethinking machine unlearning for large language models[J]. Nature Machine Intelligence, 2025, 7 (2): 181- 194.
doi: 10.1038/s42256-025-00985-0 |
| 7 |
YAN Y M, CHEN C Q, HU Y B, et al. LLM-based collaborative programming: impact on students’ computational thinking and self-efficacy[J]. Humanities and Social Sciences Communications, 2025, 12 (1): 149.
doi: 10.1057/s41599-025-04471-1 |
| 8 | BONNER M, ZELLER M, SCHULZ G, et al. LLM-based approach to automatically establish traceability between requirements and MBSE[C]//Proc. of the INCOSE International Symposium, 2024. |
| 9 | ZHANG Y, JIANG J, YANG K W, et al. Intelligent modeling method for OV models in DoDAF2.0 based on knowledge graph[J]. Journal of Systems Engineering and Electronics, 2025, 36(1): 139−154. |
| 10 | ZHANG Y, LI M H, WANG X L, et al. Intelligent modeling framework for system of systems architecture based on knowledge graph[C]//Proc. of the International Symposium on Knowledge and Systems Sciences, 2022. |
| 11 |
ZHONG S H, SCARINCI A, CICIRELLO A. Natural language processing for systems engineering: automatic generation of systems modelling language diagrams[J]. Knowledge-Based Systems, 2023, 259, 110071.
doi: 10.1016/j.knosys.2022.110071 |
| 12 | AKUNDI A, ONTIVEROS J, LUNA S. Text-to-model transformation: natural language-based model generation framework[J]. Systems, 2024, 12(9): 369. |
| 13 | QIE Y G, ZHU W J, LIU A S, et al. A deep learning based framework for textual requirement analysis and model generation[C]//Proc. of the IEEE CSAA Guidance, Navigation and Control Conference, 2018. |
| 14 | 刘蒙, 耿施展, 丁国辉. 基于自定义规则的SysML用例自动生成方法研究[J]. 图学学报, 2024, 45 (2): 374- 382. |
| LIU M, GENG S Z, DING G H. Research on rule-based method for automatic generation of SysML use cases[J]. Journal of Graphics, 2024, 45 (2): 374- 382. | |
| 15 | CHAMI M, ZOGHBI C, BRUEL J M. A first step towards AI for MBSE: generating a part of SysML models from text using AI[C]//Proc. of the INCOSE Artificial Intelligence for Systems Engineering, 2019. |
| 16 | CHEN M, BHADA S V. Converting natural language policy article into MBSE model[C]//Proc. of the INCOSE International Symposium, 2022. |
| 17 | RAY A T, FISCHER O J, MAVRIS D N, et al. AeroBERT-NER: named-entity recognition for aerospace requirements engineering using BERT[C]//Proc. of the AIAA SciTech 2023 Forum, 2023. |
| 18 | 鲍阳, 杨志斌, 杨永强, 等. 基于限定中文自然语言需求的SysML模型自动生成方法[J]. 计算机研究与发展, 2021, 58 (4): 706- 730. |
| BAO Y, YANG Z B, YANG Y Q, et al. An automated approach to generate SysML models from restricted natural language requirements in Chinese[J]. Journal of Computer Research and Development, 2021, 58 (4): 706- 730. | |
| 19 | 贾一荻, 刘璘. 中文非功能需求描述的识别与分类方法研究[J]. 软件学报, 2019, 30 (10): 3115- 3126. |
| JIA Y D, LIU L. Recognition and classification of non-functional requirements in Chinese[J]. Journal of Software, 2019, 30 (10): 3115- 3126. | |
| 20 | CHEN J, HU B K, DIAO W W, et al. Automatic generation of SysML requirement models based on Chinese natural language requirements[C]//Proc. of the 6th International Conference on Electronic Information Technology and Computer Engineering, 2022. |
| 21 | ALSHAREEF A, KELLER N, CARBO P, et al. Generative AI with modeling and simulation of activity and flow-based diagrams[C]//Proc. of the International Conference on Simulation Tools and Techniques, 2023. |
| 22 | 曾冰洁. 基于UML的机器学习赋能系统可视化需求建模[D]. 大庆: 东北石油大学, 2024. |
| ZENG B J. UML-based visual requirements modeling for machine learning-enabled systems[D]. Daqing: Northeast Petroleum University, 2024. | |
| 23 | 于晗, 陈治源, 熊熙瑞, 等. 基于检索增强大语言模型的MBSE智能设计方法[J]. 图学学报, 2024, 45 (6): 1188- 1199. |
| YU H, CHEN Z Y, XIONG X R, et al. Intelligent MBSE design approach based on retrieval augmented large language model[J]. Journal of Graphics, 2024, 45 (6): 1188- 1199. | |
| 24 | TOPCU T G, HUSAIN M, OFSA M, et al. Trust at your own peril: a mixed methods exploration of the ability of large language models to generate expert-like systems engineering artifacts and a characterization of failure modes[J]. Systems Engineering, 2025, 28 (5): 583- 604. |
| 25 |
CAMARA J, TROYA J, BURGUENO L, et al. On the assessment of generative AI in modeling tasks: an experience report with ChatGPT and UML[J]. Software and Systems Modeling, 2023, 22 (3): 781- 793.
doi: 10.1007/s10270-023-01105-5 |
| 26 | HAUSE M. The SysML modelling language[C]//Proc. of the Fifteenth European Systems Engineering Conference, 2006. |
| 27 | WOLNY S, MAZAK A, CARPELLA C, et al. Thirteen years of SysML: a systematic mapping study[J]. Software and Systems Modeling, 2020, 19(1): 111−169. |
| 28 | 金鑫, 贺宇峰. 基于SysML的空间有效载荷测试路径自动生成方法[J]. 系统工程与电子技术, 2024, 46 (10): 3416- 3426. |
| JIN X, HE Y F. Method for automatic generation of space effective payload test paths based on SysML[J]. Systems Engineering and Electronics, 2024, 46 (10): 3416- 3426. | |
| 29 |
邱超凡, 王世贵, 孟凡凯, 等. 基于DoDAF和XML的装备体系需求方案生成系统[J]. 兵工自动化, 2016, 35 (12): 33- 37.
doi: 10.7690/bgzdh.2016.12.010 |
|
QIU C F, WANG S G, MENG F K, et al. Equipment system requirement scheme generation system based on DoDAF and XML[J]. Ordnance Industry Automation, 2016, 35 (12): 33- 37.
doi: 10.7690/bgzdh.2016.12.010 |
|
| 30 | MEHMOOD W, KHAN A W, ASLAM W, et al. Requirement design for software configuration and system modeling[J]. Intelligent Automation & Soft Computing, 2022, 32(1): 441−454. |
| 31 | FANG K, TANG C, WANG J. Evaluating simulated teaching audio for teacher trainees using RAG and local LLMs[J]. Scientific Reports, 2025, 15(1): 3633−3633. |
| 32 | YANG R, NING Y L, KEPPO E, et al. Retrieval-augmented generation for generative artificial intelligence in health care[J]. npj Health Systems, 2025, 2(1): 2. |
| 33 |
MENG W J, LI Y Z, CHEN L L, et al. Using the retrieval-augmented generation to improve the question-answering system in human health risk assessment: the development and application[J]. Electronics, 2025, 14 (2): 386- 386.
doi: 10.3390/electronics14020386 |
| 34 | INFINIGENCE AI. RAGFlow: retrieval-augmented generation flow [EB/OL]. [2025-03-03]. https://github.com/infiniflow/ragflow. |
| 35 |
BANSAL P. Prompt engineering importance and applicability with generative AI[J]. Journal of Computer and Communications, 2024, 12 (10): 14- 23.
doi: 10.4236/jcc.2024.1210002 |
| 36 | ALEKSANDRAVICIENE A, STROLIA Z, JANKAUSKAS O. Application of SysMLv1 vs SysMLv2 in the scope of the MagicGrid Framework[C]//Proc. of the INCOSE International Symposium, 2024. |
| [1] | 鲁金直, 王国新, 唐锡晋, 唐俊杰, 温跃杰, 唐剑, 张旸旸, 兰小平, 刘奇, 李俊霖, 马君达, 吴绶玄, 胡晓度. 面向空间智能的基于模型的系统工程方法[J]. 系统工程与电子技术, 2025, 47(12): 3877-3889. |
| [2] | 赖康, 陆中, 程大炜, 缪炜润. 基于SysML2NuSMV的民用飞机电传飞控系统安全性分析[J]. 系统工程与电子技术, 2025, 47(11): 3802-3815. |
| [3] | 金鑫, 贺宇峰. 基于SysML的空间有效载荷测试路径自动生成方法[J]. 系统工程与电子技术, 2024, 46(10): 3416-3426. |
| [4] | 任浩亮, 张建超, 程会川. 基于SysML的武器装备体系能力需求建模分析方法[J]. 系统工程与电子技术, 2023, 45(9): 2843-2851. |
| [5] | 曹嘉平, 欧萌歆, 李易珊, 姜江, 李际超. 岛礁防空电子对抗装备体系构建与效能评估[J]. 系统工程与电子技术, 2023, 45(9): 2784-2792. |
| [6] | 黄冉, 彭祺擘, 武新峰, 倪庆. 基于DoDAF的载人登月体系结构建模[J]. 系统工程与电子技术, 2023, 45(7): 2131-2137. |
| [7] | 卢元杰, 刘志敏, 孙智孝, 阚东. 基于模型的无人机系统架构综合评估方法[J]. 系统工程与电子技术, 2022, 44(4): 1239-1245. |
| [8] | 焦洪臣, 雷勇, 张宏宇, 张国斌, 王耀东. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43(9): 2516-2525. |
| [9] | 王雨农, 毕文豪, 张安, 詹超. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43(12): 3579-3585. |
| [10] | 王文浩, 毕文豪, 张安, 范秋岑. 基于MBSE的民机系统功能建模方法[J]. 系统工程与电子技术, 2021, 43(10): 2884-2892. |
| [11] | 柯文俊, 陈静, 江山. 基于Petri网模型的系统仿真验证方法[J]. 系统工程与电子技术, 2017, 39(4): 924-930. |
| [12] | 董勇伟, 周良将, 唐波, 梁兴东, 丁赤飚. SAR实时成像处理平台的设计与实现[J]. Journal of Systems Engineering and Electronics, 2009, 31(8): 1882-1886. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||