系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (10): 3300-3312.doi: 10.12305/j.issn.1001-506X.2025.10.17

• 系统工程 • 上一篇    

智能飞行冲突解脱算法的持续学习机制

隋东, 蔡向嵘   

  1. 南京航空航天大学民航学院,江苏 南京 211106
  • 收稿日期:2024-04-11 出版日期:2025-10-25 发布日期:2025-10-23
  • 通讯作者: 蔡向嵘
  • 作者简介:隋 东(1972—),男,副教授,博士,主要研究方向为空中交通智能化、空域规划
  • 基金资助:
    中国民用航空局项目([2022]125号)资助课题

Continual learning mechanism for intelligent flight conflict resolution algorithm

Dong SUI, Xiangrong CAI   

  1. College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
  • Received:2024-04-11 Online:2025-10-25 Published:2025-10-23
  • Contact: Xiangrong CAI

摘要:

为提升智能飞行冲突解脱方法的持续有效性,考虑空域环境等因素动态变化的情况,在智能飞行冲突解脱算法中引入持续学习机制。首先基于马尔可夫决策过程对飞行冲突解脱问题建模;再利用深度强化学习方法对模型进行训练,使其能够有效解决飞行冲突;最后引入基于参数隔离和元学习两种持续学习方法,便于模型快速适应新冲突场景。实验结果表明,在引入持续学习方法后,模型在初期的冲突解脱成功率几乎超过70%,最终超过90%,对于初始训练场景的记忆留存程度超过87%,有效避免了灾难性遗忘,提升了模型的持续学习能力。该模型对于保障飞行安全、降低管制员工作负荷、提升空中交通运行效率有重要意义。

关键词: 空中交通管制, 飞行冲突解脱, 持续学习, 深度强化学习

Abstract:

In order to enhance the continual effectiveness of intelligent flight conflict resolution methods, considering the dynamic changes of factors such as airspace environment, a continual learning mechanism into the intelligent flight conflict resolution algorithm is proposed. Firstly, the flight conflict resolution problem based on Markov decision process is modeling. And then, the model using deep reinforcement learning methods is trained to effectively resolve flight conflicts. Finally, two continual learning methods, namely parameter isolation and meta-learning, are introduced to facilitate the model to rapidly adapt to new conflict scenarios. The experiment results show that after introducing the continual learning methods, the model achieves an initial successful rate of nearly over 70% in conflict resolution, eventually over 90%. The model retains over 87% of its memory for the initial training scenarios, effectively avoiding catastrophic forgetting and improving its continual learning capability. The model is of great significance in ensuring flight safety, reducing the workload of air traffic controllers and improving the efficiency of air traffic operations.

Key words: air traffic control, flight conflict resolution, continual learning, deep reinforcement learning

中图分类号: