1 |
WANG J, HE J C, PENG B, et al. Generalized interacting multiple model Kalman filtering algorithm for maneuvering target tracking under non-Gaussian noises[J]. ISA Transaction, 2024, 155, 148- 163.
doi: 10.1016/j.isatra.2024.09.015
|
2 |
程雨. 基于单测向站的目标跟踪算法研究[D]. 武汉: 华中科技大学, 2019.
|
|
CHENG Y. Research on target tracking algorithm based on single direction finding station[D]. Wuhan: Huazhong University of Science and Technology, 2019.
|
3 |
王芝燕. 低空机动目标跟踪算法研究[D]. 成都: 电子科技大学, 2022.
|
|
WANG Z Y. Research on low altitude maneuvering target tracking algorithm[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
4 |
YANG B J, WANG H G, SHI Z Y. Interacting multiple model adaptive robust Kalman filter for process and measurement modeling errors simultaneously[J]. Signal Processing, 2024, 227, 109743.
|
5 |
ARROYO C A, ASENSIO V M. Adaptive IMM-UKF for airborne tracking[J]. Aerospace, 2023, 10 (8): 698.
doi: 10.3390/aerospace10080698
|
6 |
XIE G, SUN L L, WEN T, et al. Adaptive transition probability matrix-based parallel IMM algorithm[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51 (5): 2980- 2989.
|
7 |
XU W W, XIAO J K, XU D L, et al. An adaptive IMM algorithm for a PD radar with improved maneuvering target tracking performance[J]. Remote Sensing, 2024, 16 (6): 1051.
doi: 10.3390/rs16061051
|
8 |
王平波, 陈强, 卫红凯, 等. 一种基于模型概率单调性变化的自适应IMM-UKF改进算法[J]. 电子与信息学报, 2024, 46 (1): 41- 48.
|
|
WANG P B, CHEN Q, WEI H K, et al. An improved adaptive IMM-UKF algorithm based on monotonicity change of model probability[J]. Journal of Electronics & Information Technology, 2024, 46 (1): 41- 48.
|
9 |
臧荣春, 崔平远. 马尔可夫参数自适应IFIMM算法研究[J]. 电子学报, 2006, 34 (3): 521- 524.
|
|
ZANG R C, CUI P Y. Research on adaptive Markov parameter IFIMM algorithm[J]. Acta Electronica Sinica, 2006, 34 (3): 521- 524.
|
10 |
封普文, 黄长强, 曹林平, 等. 马尔可夫矩阵修正IMM跟踪算法[J]. 系统工程与电子技术, 2013, 35 (11): 2269- 2274.
|
|
FENG P W, HUANG C Q, CAO L P, et al. Markov matrix modified IMM tracking algorithm[J]. Systems Engineering and Electronics, 2013, 35 (11): 2269- 2274.
|
11 |
LEE I H, PARK C G. An improved interacting multiple model algorithm with adaptive transition probability matrix based on the situation[J]. International Journal of Control, Automation and Systems, 2023, 21 (10): 3299- 3312.
|
12 |
DENG L C, LI D, LI R F. Improved IMM algorithm based on RNNs[J]. Journal of Physics: Conference Series, 2020, 1518 (1): 12055.
doi: 10.1088/1742-6596/1518/1/012055
|
13 |
BECKER S, HUG R, HUEBNER W, et al. An RNN-based IMM filter surrogate[J]. Image Analysis, 2019, 11482, 387- 398.
|
14 |
LUI D G, TARTAGLIONE G, CONTI F, et al. Long short-term memory-based neural networks for missile maneuvers trajectories prediction[J]. IEEE Access, 2023, 11, 30819- 30831.
doi: 10.1109/ACCESS.2023.3262023
|
15 |
LIU B C, SHI Q Y, HAN P. Short-term 4D trajectory prediction method based on LST-M-IMM[C]//Proc. of the IEEE/AIAA 41st Digital Avionics Systems Conference, 2022.
|
16 |
SUN Y, TIAN X, BAO W, et al. Improving treatment of noise specification of Kalman filtering for state updating of hydrological models: combining the strengths of the interacting multiple model method and c-ubature Kalman filter[J]. Water Resources Research, 2023, 59 (7): e2022WR033635.
doi: 10.1029/2022WR033635
|
17 |
DENG F, YANG H L, WANG L J. Adaptive unscented Kalman filter based estimation and filtering for dynamic positioning with model uncertainties[J]. International Journal of Control, Automation and Systems, 2019, 17 (3): 667- 678.
|
18 |
HU K Y, WANG J M, CHENG Y Q, et al. Adaptive filtering and smoothing algorithm based on variable structure interactive multiple model[J]. Scientific Reports, 2023, 13 (1): 12993.
doi: 10.1038/s41598-023-39075-9
|
19 |
ZHOU H, ZHAO H, HUANG H Q, et al. A cubature-principle-assisted IMM-adaptive UKF algorithm for maneuvering target tracking caused by sensor faults[J]. Applied Sciences, 2017, 7 (10): 1003.
doi: 10.3390/app7101003
|
20 |
WU X T, LIU Y, MA X C. An underwater maneuvering target tracking algorithm based on UKF with adaptive sampling range[C]//Proc. of the Technical Committee on Control Theory, 2023: 3133−3138.
|
21 |
LIU M, NIU J, LIU Y. UKF-MOT: an unscented Kalman filter-based 3D multi-object tracker[J]. CAAI Transactions on Intelligence Technology, 2024, 9 (4): 1031- 1041.
doi: 10.1049/cit2.12315
|
22 |
DONG Y L, LI W Q, LI D X, et al. Intelligent tracking method for aerial maneuvering target based on unscented Kalman filter[J]. Remote Sensing, 2024, 16 (17): 3301.
doi: 10.3390/rs16173301
|
23 |
RONG D D, WANG Y. An adaptive spatial target tracking method based on unscented Kalman filter[J]. Sensors, 2024, 24 (18): 6094.
doi: 10.3390/s24186094
|
24 |
HOU Z W, BU F L. A small UAV tracking algorithm based on AIMM-UKF[J]. Aircraft Engineering and Aerospace Technology, 2021, 93 (4): 579- 591.
doi: 10.1108/AEAT-01-2019-0013
|
25 |
黄小平, 王岩, 缪鹏程. 目标定位跟踪原理及应用[M]. 北京: 电子工业出版社, 2018.
|
|
HUANG X P, WANG Y, MIAO P C. Principle and application of target location and tracking[M]. Beijing: Publishing House of Electronics Industry, 2018.
|
26 |
ZHAO B F. Multisensor maneuvering target fusion tracking using interacting multiple model[J]. Automatic Control and Computer Sciences, 2024, 58 (3): 303- 312.
doi: 10.3103/S0146411624700184
|
27 |
SUN M X, DUAN Q W, XIA W R, et al. Multiple adaptive factors based interacting multiple model estimator[J]. IET Control Theory & Applications, 2024, 18 (8): 1059- 1069.
|
28 |
LI X H, LU B, LI Y X, et al. Adaptive interacting multiple model for underwater maneuvering target tracking with one-step randomly delayed measurements[J]. Ocean Engineering, 2023, 280, 114933.
doi: 10.1016/j.oceaneng.2023.114933
|
29 |
ZHENG T Y, YAO Y, HE F H, et al. Active switching multiple model method for tracking a noncooperative gliding flight vehicle[J]. SCIENCE CHINA Information Sciences, 2020, 63 (9): 192202.
doi: 10.1007/s11432-019-1515-2
|
30 |
WANG J W, CHEN X Y, SHAO X. An adaptive multiple backtracking UKF method based on Krein space theory for marine vehicles alignment process[J]. IEEE Trans. on Vehicular Technology, 2023, 72 (3): 3214- 3226.
doi: 10.1109/TVT.2022.3220243
|
31 |
QIU Y H, SU Y, HE X Y, et al. An improved IMM-KF for UAV position prediction[C]//Proc. of the International Conference on Control and Intelligent Robotics, 2023.
|