1 |
LAN J H , LIU X D , LI B , et al. A novel hierarchical attention-based triplet network with unsupervised domain adaptation for network intrusion detection[J]. Applied Intelligence, 2023, 53 (10): 11705- 11726.
doi: 10.1007/s10489-022-04076-0
|
2 |
THAKKAR A , LOHIYA R . A survey on intrusion detection system: feature selection, model, performance measures, appli cation perspective, challenges, and future research directions[J]. Artificial Intelligence Review, 2022, 55 (1): 453- 463.
doi: 10.1007/s10462-021-10037-9
|
3 |
CUI J Y , ZONG L S , XIE J H , et al. A novel multi-module integrated intrusion detection system for high-dimensional imba-lanced data[J]. Applied Intelligence, 2023, 53 (1): 272- 288.
doi: 10.1007/s10489-022-03361-2
|
4 |
KHAN S H , HAYAT M , BENNAMOUN M , et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Trans. on Neural Networks and Learning Systems, 2018, 29 (8): 3573- 3587.
doi: 10.1109/TNNLS.2017.2732482
|
5 |
李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34 (4): 673- 688.
|
|
LI Y X , CHAI Y , HU Y Q , et al. Review of imbalanced data classification methods[J]. Control and Decision, 2019, 34 (4): 673- 688.
|
6 |
BEDI P , GUPTA N , JINDAL V . Ⅰ-SiamIDS: an improved SiamIDS for handling class imbalance in network-based intrusion detection systems[J]. Applied Intelligence, 2021, 51, 1133- 1151.
doi: 10.1007/s10489-020-01886-y
|
7 |
潘成胜, 李志祥, 杨雯升, 等. 基于二次特征提取和BiLSTM-Attention的网络流量异常检测方法[J]. 电子与信息学报, 2023, 45 (12): 4539- 4547.
doi: 10.11999/JEIT221296
|
|
PAN C S , LI Z X , YANG W S , et al. Anomaly detection method of network traffic based on secondary feature extraction and BiLSTM-attention[J]. Journal of Electronics & Information Technology, 2023, 45 (12): 4539- 4547.
doi: 10.11999/JEIT221296
|
8 |
LAN Y, TRUONG-HUU T, WU J, et al. Cascaded multi-class network intrusion detection with decision tree and self-attentive model[C]//Proc. of the IEEE International Conference on Data Mining Workshops, 2022.
|
9 |
DENNING D E . An intrusion-detection model[J]. IEEE Trans. on Software Engineering, 1987, 13 (2): 222- 232.
|
10 |
PORRAS P A, KEMMERER R A. Penetration state transition analysis: a rule-based intrusion detection approach[C]//Proc. of the 8th Annual Computer Security Application Conference, 1992: 220-229.
|
11 |
SHEU T F, HUANG N F, LEE H P. NIS04-6: a time-and memory-efficient string matching algorithm for intrusion detection systems[C]//Proc. of the IEEE Global Communications Conference, 2006.
|
12 |
PAN Z S, LIAN H, HU G Y, et al. An integrated model of intrusion detection based on neural network and expert system[C]// Proc. of the 17th IEEE International Conference on Tools with Artificial Intelligence, 2005.
|
13 |
LUNT T F, JAGANNATHAN R. A prototype real-time intrusion-detection expert system[C]//Proc. of the IEEE Symposium on Security & Privacy, 1988.
|
14 |
GU J , LU S . An effective intrusion detection approach using SVM with naive Bayes feature embedding[J]. Computers & Security, 2021, 103, 102158.
|
15 |
GUEZZAZ A , BENKIRANE S , AZROUR M , et al. A reliable network intrusion detection approach using decision tree with enhanced data quality[J]. Security and Communication Networks, 2021, 2021, 123059.
|
16 |
AZIZJON M, JUMABEK A, KIM W. 1D CNN based network intrusion detection with normalization on imbalanced data[C]//Proc. of the International Conference on Artificial Intelligence in Information and Communication, 2020: 218-224.
|
17 |
TIAN Q T , HAN D Z , LI K C , et al. An intrusion detection approach based on improved deep belief network[J]. Applied Intelligence, 2020, 50, 3162- 3178.
doi: 10.1007/s10489-020-01694-4
|
18 |
FOTIADOU K , VELIVASSAKI T H , VOULKIDIS A , et al. Network traffic anomaly detection via deep learning[J]. Information, 2021, 12 (5): 215.
doi: 10.3390/info12050215
|
19 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
20 |
DING D F, ZHU L, XIE J Y, et al. In-vehicle network intrusion detection system based on Bi-LSTM[C]//Proc. of the 7th International Conference on Intelligent Computing and Signal Processing, 2022: 580-583.
|
21 |
MOUSTAFA N, SLAY J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proc. of the Military Communications and Information Systems Conference, 2015.
|
22 |
SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proc. of the International Con-ference on Information Systems Security & Privacy, 2018: 108-116.
|
23 |
AL-TURAIKI I , ALTWAIJRY N . A convolutional neural net work for improved anomaly-based network intrusion detection[J]. Big Data, 2021, 9 (3): 233- 252.
doi: 10.1089/big.2020.0263
|
24 |
HALBOUNI A , GUNAWAN T S , HABAEBI M H , et al. CNN-LSTM: hybrid deep neural network for network intrusion detection system[J]. IEEE Access, 2022, 10, 99837- 99849.
doi: 10.1109/ACCESS.2022.3206425
|
25 |
UDAS P B , KARIM M E , ROY K S . SPIDER: a shallow PCA based network intrusion detection system with enhanced recurr ent neural networks[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34 (10): 10246- 10272.
doi: 10.1016/j.jksuci.2022.10.019
|
26 |
REH H J , TANG Y H , DONG W Y , et al. DUEN: dynamic ensemble handling class imbalance in network intrusion detection[J]. Expert Systems with Applications, 2023, 229, 120420.
doi: 10.1016/j.eswa.2023.120420
|