系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (4): 1222-1234.doi: 10.12305/j.issn.1001-506X.2025.04.19

• 系统工程 • 上一篇    下一篇

基于火炮转移路径预测的无人机集群反炮兵搜索路径规划

耿泽, 黄炎焱, 张寒   

  1. 南京理工大学自动化学院, 江苏 南京 210094
  • 收稿日期:2024-04-16 出版日期:2025-04-25 发布日期:2025-05-28
  • 通讯作者: 黄炎焱
  • 作者简介:耿泽(1998—), 男, 博士研究生, 主要研究方向为仿真建模与评估决策
    黄炎焱(1973—), 男, 教授, 博士, 主要研究方向为系统建模与仿真、效能评估、指挥控制与决策
    张寒(1994—), 男, 博士, 主要研究方向为系统建模与仿真、指挥控制与决策
  • 基金资助:
    国家自然科学基金(61374186);共用技术课题(50901020202)

UAV swarm anti-artillery search path planning based on artillery transfer path prediction

Ze GENG, Yanyan HUANG, Han ZHANG   

  1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2024-04-16 Online:2025-04-25 Published:2025-05-28
  • Contact: Yanyan HUANG

摘要:

现代炮兵具有机动作战、快打快撤的特点, 依据炮位侦察雷达的定位对其反击难以直接命中。为此, 提出一种基于火炮转移路径预测的无人机集群反炮兵搜索路径规划方法, 通过预测火炮射击后的转移路径, 提高无人机集群对其发现与打击的效能。建立战场环境与作战要素模型, 提出作战状态与地貌环境适宜度概念。通过炮兵作战Markov状态模型, 结合作战状态与地貌环境适宜度进行火炮转移路径预测。同时, 基于滚动时域优化构建无人机集群搜索路径规划算法, 通过目标函数中新设计的预期收益项, 解决稀疏信息素分布下的搜索路径寻优问题。仿真结果表明, 所提方法能够有效利用战场信息, 预测蓝方炮兵可能的转移路径。相较于对比方法, 所提方法在搜索与打击任务中的效能与稳定性均具有一定优势, 为后续的实际应用提供基础。

关键词: 反炮兵作战, 无人机集群, Markov状态模型, 搜索路径规划

Abstract:

Modern artillery has the characteristics of maneuver combat, quick-hitting and fast-retreating. It is difficult to hit it directly based on the position provided by the artillery reconnaissance radar. Therefore, a method for planning search paths for unmanned aerial vehicle (UAV) swarm to against artillery based on the prediction of the transfer path of artillery is proposed. The proposed method improves artillerg discover and strike effciency of UAV swarm by predicting the transfer path of artillery after shotting. The model of the battlefield environment and combat elements is established, and the concept of combat state and geomorphic environment suitability are proposed. The Markov state model of artillery combat is utilized to combine the combat state and geomorphic environment suitability for artillery transfer path prediction. An UAV swarm search path planning algorithm is constructed based on rolling time-domain optimization, and the search path optimization problem under sparse pheromone distribution is solved through the newly designed expected reward term in the objective function. The results of the simulation demonstrate that the proposed method is capable of effectively utilizing battlefield information to predict the possible transfer paths of blue artillery. In comparison to other methods for comparison, the proposed method demonstrates certain advantages in terms of effectiveness and stability in search and strike tasks, which provides a basis for subsequent practical applications.

Key words: anti-artillery combat, unmanned aerial vehicle (UAV) swarm, Markov state model, search path planning

中图分类号: