系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 390-397.doi: 10.12305/j.issn.1001-506X.2025.02.06

• 电子技术 • 上一篇    

基于MFFDet-R的多源舰船图像融合检测方法

姜杰, 凌青, 闫文君, 刘凯   

  1. 海军航空大学航空作战勤务学院, 山东 烟台 264001
  • 收稿日期:2023-12-21 出版日期:2025-02-25 发布日期:2025-03-18
  • 通讯作者: 凌青
  • 作者简介:姜杰 (1990—), 男, 助理工程师, 博士研究生, 主要研究方向为人工智能、图像处理
    凌青 (1987—), 女, 副教授, 博士, 主要研究方向为电磁信号处理
    闫文君 (1986—), 男, 副教授, 博士, 主要研究方向为电磁信号处理
    刘凯 (1986—), 男, 副教授, 博士, 主要研究方向为人工智能、深度学习
  • 基金资助:
    国家自然科学基金(62371465);山东省青创团队(2022kj084);山东省自然科学基金(ZR2020QF010)

Multi-source ship image fusion detection method based on MFFDet-R

Jie JIANG, Qing LING, Wenjun YAN, Kai LIU   

  1. Aviation Combat Service Academy, Naval Aviation University, Yantai 264001, China
  • Received:2023-12-21 Online:2025-02-25 Published:2025-03-18
  • Contact: Qing LING

摘要:

针对对无人机采集到的多源图像的舰船目标融合检测问题, 提出一种基于多模态特征融合旋转检测网络(multi-modal feature fusion detection network based on rotation, MFFDet-R)的多源舰船图像融合检测方法。首先, 为提升检测速度, 采用单阶段无锚框设计降低计算量。随后, 为提升检测精度, 采用旋转任务对齐学习进行标签分配和对齐。然后, 为实现多模态特征的充分融合, 设计多模态特征融合网络。最后, 根据特定场景有针对性地设计检测头和角度预测头, 以提升网络检测性能。通过实验对比验证, 结果表明所提方法可以有效实现对多源舰船的融合检测, 且对不同场景舰船目标的检测性能优于其他方法。

关键词: 多源图像, 融合检测, 任务对齐学习, 特征融合

Abstract:

A multi-source ship image fusion detection method based on multi-modal feature fusion detection network based on rotation (MFFDet-R) is proposed to address the issue of ship target fusion detection for multi-source images obtained by unmanned aerial vehicles. Firstly, a single-stage anchor free frame design is adopted to reduce computational complexity to improve detection speed. Subsequently, rotation task alignment learning is adopted for label allocation and alignment to improve detection accuracy. Then, a multimodal feature fusion network is designed to achieve full fusion of multimodal features. Finally, detection heads and angle prediction heads are designed for specific scenarios to improve network detection performance. Through experimental comparison and verification, the results show that the proposed method can effectively achieve fusion detection of multi-source ships, and its detection performance for ship targets in different scenarios is superior to other methods.

Key words: multi-source image, fusion detection, task alignment learning, feature fusion

中图分类号: