1 |
王彦情, 马雷, 田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37 (9): 1029- 1039.
|
|
WANG Y Q , MA L , TIAN Y . Overview of ship target detection and recognition in optical remote sensing images[J]. Journal of Automation, 2011, 37 (9): 1029- 1039.
|
2 |
赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2023, 34 (1): 242- 251.
|
|
ZHAO Q C , WU Y Q , YUAN Y B . Research progress on ship target detection and recognition methods in optical remote sensing images[J]. Journal of Aeronautics, 2023, 34 (1): 242- 251.
|
3 |
何友, 熊伟, 刘俊, 等. 海上信息感知与融合研究进展及展望[J]. 火力与指挥控制, 2018, 43 (6): 1- 10.
doi: 10.3969/j.issn.1002-0640.2018.06.001
|
|
HE Y , XIONG W , LIU J , et al. Research progress and prospects on maritime information perception and fusion[J]. Firepower and Command and Control, 2018, 43 (6): 1- 10.
doi: 10.3969/j.issn.1002-0640.2018.06.001
|
4 |
甘春生. 星载遥感图像舰船检测方法研究[D]. 辽宁: 沈阳航空航天大学, 2016.
|
|
GAN C S. Research on ship detection methods in spaceborne remote sensing images[D]. Liaoning: Shenyang University of Aeronautics and Astronautics, 2016.
|
5 |
LEI S , ZOU Z X , LIU D G , et al. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features[J]. Infrared Physics & Technology, 2018, 91, 12- 17.
|
6 |
ZHI B X , ZHOU F . Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43 (6): 2145- 2156.
doi: 10.1016/j.patcog.2009.12.023
|
7 |
LIU R , LU Y , GONG C , et al. Infrared point target detection with improved template matching[J]. Infrared Physics & Technology, 2012, 55 (4): 380- 387.
|
8 |
李海军, 孔繁程, 林云. 基于改进YOLOv5s的红外舰船检测算法[J]. 系统工程与电子技术, 2023, 45 (8): 2415- 2422.
|
|
LI H J , KONG F C , LIN Y . Infrared ship detection algorithm based on improved YOLOv5s[J]. Systems Engineering and Electronics, 2023, 45 (8): 2415- 2422.
|
9 |
潘为年. 基于深度学习的红外成像舰船目标检测方法研究[D]. 成都: 电子科技大学, 2021.
|
|
PAN W N. Research on infrared imaging ship target detection method based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
10 |
ZHANG J X . Multi-source remote sensing data fusion: status and trends[J]. International Journal of Image and Data Fusion, 2010, 1 (1): 5- 24.
doi: 10.1080/19479830903561035
|
11 |
LI M J, DONG Y B, WANG X L. Pixel level image fusion based the wavelet transform[C]//Proc. of the 6th International Congress on Image and Signal Processing, 2013, 2: 995-999.
|
12 |
HAN X , LYU Y , SONG T X . An adaptive two-scale image fusion of visible and infrared images[J]. IEEE Access, 2019, 7, 56341- 56352.
doi: 10.1109/ACCESS.2019.2913289
|
13 |
YOU T T, TANG Y. Visual saliency detection based on adaptive fusion of color and texture features[C]//Proc. of the 3rd IEEE International Conference on Computer and Communications, 2017: 2034-2039.
|
14 |
杨曦, 张鑫, 郭浩远, 等. 基于不变特征的多源遥感图像舰船目标检测算法[J]. 电子学报, 2022, 50 (4): 887.
|
|
YANG X , ZHANG X , GUO H Y , et al. Ship target detection algorithm based on invariant features in multi-source remote sensing images[J]. Journal of Electronics, 2022, 50 (4): 887.
|
15 |
WANG A, JIANG J N, ZHANG H Y. Multi-sensor image decision level fusion detection algorithm based on D-S evidence theory[C]//Proc. of the 4th International Conference on Instrumentation and Measurement, Computer, Communication and Control, 2014, 620-623.
|
16 |
PAUL P P , GAVRILOVA M L , ALHAJJ R . Decision fusion for multimodal biometrics using social network analysis[J]. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2014, 44 (11): 1522- 1533.
doi: 10.1109/TSMC.2014.2331920
|
17 |
关欣, 国佳恩, 衣晓. 基于低秩双线性池化注意力网络的舰船目标识别[J]. 系统工程与电子技术, 2023, 45 (5): 1305- 1314.
|
|
GUAN X , GUO J E , YI X . Ship target recognition based on low rank bilinear pooling attention network[J]. Systems Engineering and Electronics, 2023, 45 (5): 1305- 1314.
|
18 |
DELIANG X , YIHAO X U , JIANDA C , et al. An algorithm based on a feature interaction-based keypoint detector and sim-CSPNet for SAR image registration[J]. Journal of Radars, 2022, 11 (6): 1081- 1097.
|
19 |
ZHANG Y C , ZHANG W B , YU J Y , et al. Complete and accurate holly fruits counting using YOLOX object detection[J]. Computers and Electronics in Agriculture, 2022, 198, 107062.
doi: 10.1016/j.compag.2022.107062
|
20 |
DEVER W G . The chronology of Syria-Palestine in the second millennium BCE: a review of current issues[J]. Bulletin of the American Schools of Oriental Research, 1992, 288 (1): 1- 25.
|
21 |
SONG G L, LIU Y, WANG X G. Revisiting the sibling head in object detector[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11563-11572.
|
22 |
FU A M , ZHANG X L , XIONG N X , et al. VFL: a verifiable federated learning with privacy-preserving for big data in industrial IOT[J]. IEEE Trans. on Industrial Informatics, 2020, 18 (5): 3316- 3326.
|
23 |
FENG C J, ZHONG Y J, GAO Y, et al. Tood: task-aligned one-stage object detection[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 3490-3499.
|
24 |
LI X , WANG W H , WU L J , et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33, 21002- 21012.
|
25 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proc. of the IEEE conference on computer vision and pattern recognition, 2017: 2117-2125.
|
26 |
LIU Z, LI Y, YAO L, et al. Task aligned generative meta-learning for zero-shot learning[C]//Proc. of the AAAI Confe-rence on Artificial Intelligence, 2021, 35(10): 8723-8731.
|
27 |
LLERENA J E. Probabilistic intersection-over-union for training and evaluation of oriented object detectors[J]. 2022, 15(6): 156-178.
|
28 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
29 |
ZHANG H Y, WANG Y, DAYOUB F, et al. Varifocalnet: an IoU-aware dense object detector[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8514-8523.
|
30 |
LI X , WANG W H , WU L J , et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020, 33, 21002- 21012.
|