1 |
余瑞星, 吴虞霖, 曹萌, 等. 基于边缘与角点相结合的目标提取与匹配算法[J]. 西北工业大学学报, 2017, 35 (4): 586- 590.
doi: 10.3969/j.issn.1000-2758.2017.04.005
|
|
YU R X , WU Y L , CAO M , et al. Target extraction and image matching algorithm based on combination of edge and corner[J]. Journal of Northwestern Polytechnical University, 2017, 35 (4): 586- 590.
doi: 10.3969/j.issn.1000-2758.2017.04.005
|
2 |
苏娟, 杨龙, 黄华, 等. 用于SAR图像小目标舰船检测的改进SSD算法[J]. 系统工程与电子技术, 2020, 42 (5): 1026- 1034.
|
|
SU J , YANG L , HUANG H , et al. Improved SSD algorithm for small-sized SAR ship detection[J]. Systems Engineering and Electronics, 2020, 42 (5): 1026- 1034.
|
3 |
李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40 (9): 1953- 1959.
|
|
LI J W , QU C W , PENG S J , et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40 (9): 1953- 1959.
|
4 |
张迪飞, 张金锁, 姚克明, 等. 基于SVM分类的红外舰船目标识别[J]. 红外与激光工程, 2016, 45 (1): 179- 184.
|
|
ZHANG D F , ZHANG J S , YAO K M , et al. Infrared ship-target recognition based on SVM classification[J]. Inrared and Laser Engineering, 2016, 45 (1): 179- 184.
|
5 |
KANG M, LENG X G, LIN Z, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]//Proc. of the IEEE Conference on International Workshop on Remote Sensing with Intelligent Processing, 2017.
|
6 |
WANG Y Y , WANG C , ZHANG H , et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 ima-gery[J]. Remote Sensing, 2019, 11 (5): 531- 545.
doi: 10.3390/rs11050531
|
7 |
LIN T , GOYAL P , GIRSHICK R , et al. Focal loss for dense object detection[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327.
doi: 10.1109/TPAMI.2018.2858826
|
8 |
李晖晖, 周康鹏, 韩太初. 基于CReLU和FPN改进的SSD舰船目标检测[J]. 仪器仪表学报, 2020, 41 (4): 183- 190.
|
|
LI H H , ZHOU K P , HAN T C . Ship object detection based on SSD improved with CReLU and FPN[J]. Chinese Journal of Scientific Instrument, 2020, 41 (4): 183- 190.
|
9 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]//Proc. of the Conference on European Conference on Computer Vision, 2016: 21-37.
|
10 |
杨龙, 苏娟, 李响. 基于深度卷积神经网络的SAR舰船目标检测[J]. 系统工程与电子技术, 2019, 41 (9): 1990- 1997.
|
|
YANG L , SU J , LI X . Ship detection in SAR images based on deep convolutional neural network[J]. Systems Engineering and Electronics, 2019, 41 (9): 1990- 1997.
|
11 |
CHEN Y C , TIAN Y L , HE M Y . Monocular human pose estimation: a survey of deep learning-based methods[J]. Computer Vision and Image Understanding, 2020, 192, 224- 244.
|
12 |
PAPANDREOU G, ZHU T, KANAZAWA N, et al. Towards accurate multi-person pose estimation in the wild[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3711-3719.
|
13 |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
14 |
XIAO B, WU H P, WEI Y C, et al. Simple baselines for human pose estimation and tracking[C]//Proc. of the IEEE conference on European Conference on Computer Vision, 2018: 472-487.
|
15 |
CAO Z, SIMON T, WEI S, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1302-1310.
|
16 |
PISHCHULIN L, INSAFUTDINOV E, TANG S, et al. DeepCut: joint subset partition and labeling for multi person pose estimation[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2016: 4229-4937.
|
17 |
NEWELL A, HUANG Z A, DENG J, et al. Associative embedding: end-to-end learning for joint detection and grouping[C]//Proc. of the Neural Information Processing Systems, 2017: 2277-2287.
|
18 |
XU J J , SONG B , YANG X , et al. An improved deep keypoint detection network for space targets pose estimation[J]. Remote Sensing, 2020, 12, 3857- 3878.
doi: 10.3390/rs12233857
|
19 |
ZHOU X Y, WANG D Q, PHILIPP K, et al. Objects as points[EB/OL]. [2021-02-02]. https://arxiv.org/abs/1904.07850.
|
20 |
XIAO B, WU H P, WEI Y C. Simple baselines for human pose estimation and tracking[C]//Proc. of the IEEE Conference on European Conference on Computer Vision, 2018: 472-487.
|
21 |
YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2403-2412.
|
22 |
NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[EB/OL][2021-02-02]. https://arxiv.org/abs/1603.06937.
|
23 |
ALEXANDROS S, RONALD P, GRIGORIOS K. Refining activation downsampling with SoftPool[EB/OL]. [2021-02-02]. https://arxiv.org/abs/2101.00440.
|
24 |
BRIJRAJ S , DURGA T , KUMAR A S . Shunt connection: an intelligent skipping of contiguous blocks for optimizing MobileNet-V2[J]. Neural Networks, 2019, 118, 192- 203.
doi: 10.1016/j.neunet.2019.06.006
|
25 |
WANG Q L, WU B G, ZHU P F, et al. Efficient channel attention for deep convolutional neural networks[C]//Proc. of the Conference on Computer Vision and Pattern Recognition, 2019.
|
26 |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 761-769.
|
27 |
ZHOU Y Q , CAI Z M , ZHU Y T , et al. Automatic ship detection in SAR image based on multi-scale faster R-CNN[J]. Journal of Physics: Conference Series, 2020, 1550 (4): 042006.
doi: 10.1088/1742-6596/1550/4/042006/pdf
|
28 |
黄洁, 姜志国, 张浩鹏, 等. 基于卷积神经网络的遥感图像舰船目标检测[J]. 北京航空航天大学学报, 2017, 43 (9): 1841- 1848.
|
|
HUANG J , JIANG Z G , ZHANG H P , et al. Ship object detection in remote sensing images using convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (9): 1841- 1848.
|
29 |
张雪松, 庄严, 闫飞, 等. 基于迁移学习的类别级物体识别与检测研究与进展[J]. 自动化学报, 2019, 45 (7): 1224- 1243.
|
|
ZHANG X S , ZHUANG Y , YAN F , et al. Status and devel-opment of transfer learning based category-level object recognition and detection[J]. Acta Automatica Sinica, 2019, 45 (7): 1224- 1243.
|