

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (1): 1-11.doi: 10.12305/j.issn.1001-506X.2025.01.01
黎亮1, 高红伟2,*, 张彬超3, 金城2
收稿日期:2023-11-03
出版日期:2025-01-21
发布日期:2025-01-25
通讯作者:
高红伟
作者简介:黎亮(1985—), 男, 博士, 主要研究方向为人工电磁表面、阵列天线基金资助:Liang LI1, Hongwei GAO2,*, Binchao ZHANG3, Cheng JIN2
Received:2023-11-03
Online:2025-01-21
Published:2025-01-25
Contact:
Hongwei GAO
摘要:
针对星载天线无法通过天线罩实现隐身的难题, 提出星载无天线罩自隐身天线。通过多模谐振原理并利用差异化激励方法, 构建具有单模态宽带隐身、双模态隐身-反射和双模态隐身-辐射特性的多模态电磁超表面, 进而设计辐射-隐身一体化天线。实测结果表明, 在3.05~4.95 GHz和6.4~10.5 GHz的带外吸收带, 实现雷达散射截面(radar cross section, RCS)缩减; 在5.7~6.15 GHz的频率区间内轴比低于3 dB, 天线的增益为15.3 dBi, 所设计的无天线罩一体化隐身圆极化阵列天线具有带外RCS缩减特性和良好的带内圆极化辐射性能。
中图分类号:
黎亮, 高红伟, 张彬超, 金城. 基于多模态超表面的无天线罩隐身阵列天线[J]. 系统工程与电子技术, 2025, 47(1): 1-11.
Liang LI, Hongwei GAO, Binchao ZHANG, Cheng JIN. Radome-free stealth array antenna based on multimodal hypersurface[J]. Systems Engineering and Electronics, 2025, 47(1): 1-11.
| 1 |
LIU T , CAO X Y , GAO J , et al. RCS reduction of waveguide slot antenna with metamaterial absorber[J]. IEEE Trans. on Antennas and Propagation, 2013, 61 (3):1479-1484.
doi: 10.1109/TAP.2012.2231922 |
| 2 |
LIU Y H , ZHAO X P . Perfect absorber metamaterial for designing low-RCS patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1473- 1476.
doi: 10.1109/LAWP.2014.2341299 |
| 3 |
CHENG Y F , DING X , PENG L , et al. Design and analysis of a wideband low-scattering endfire antenna using a moth tail-inspired metamaterial absorber and a surface waveguide[J]. IEEE Trans. on Antennas and Propagation, 2020, 68 (3): 1411- 1417.
doi: 10.1109/TAP.2020.2967310 |
| 4 |
REN J Y , GONG S X , JIANG W . Low-RCS monopolar patch antenna based on a dual-ring metamaterial absorber[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (1): 102- 105.
doi: 10.1109/LAWP.2017.2776978 |
| 5 |
HAN Y J , GONG S H , WANG J F , et al. Reducing RCS of patch antennas via dispersion engineering of metamaterial absorbers[J]. IEEE Trans. on Antennas and Propagation, 2020, 68 (3): 1419- 1425.
doi: 10.1109/TAP.2019.2925275 |
| 6 |
ZHENG Y J , GAO J , CAO X Y , et al. Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1582- 1585.
doi: 10.1109/LAWP.2015.2413456 |
| 7 |
GALARREGUI J C I , PEREDA A T , FALCON J D , et al. Broadband radar cross-section reduction using AMC technology[J]. IEEE Trans. on Antennas and Propagation, 2013, 61 (12): 6136- 6143.
doi: 10.1109/TAP.2013.2282915 |
| 8 |
SANG D , CHEN Q , DING L , et al. Design of checkerboard AMC structure for wideband RCS reduction[J]. IEEE Trans. on Antennas and Propagation, 2019, 67 (4): 2604- 2612.
doi: 10.1109/TAP.2019.2891657 |
| 9 |
XUE J J , JIANG W , GONG S X . Chessboard AMC surface based on quasi-fractal structure for wideband RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (2): 201- 204.
doi: 10.1109/LAWP.2017.2780085 |
| 10 |
ZHANG C , GAO J , CAO X Y , et al. Low scattering microstrip antenna array using coding artificial magnetic conductor ground[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (5): 869- 872.
doi: 10.1109/LAWP.2018.2820220 |
| 11 |
LIU Y , HAO Y W , WANG H , et al. Low RCS microstrip patch antenna using frequency-selective surface and microstrip resonator[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1290- 1293.
doi: 10.1109/LAWP.2015.2402292 |
| 12 |
SHARMA A , KANAUJIA B K , DWARI S , et al. Wideband high-gain circularly-polarized low RCS dipole antenna with a frequency selective surface[J]. IEEE Access, 2019, 7, 156592- 156602.
doi: 10.1109/ACCESS.2019.2948176 |
| 13 |
LIAO W J , ZHANG W Y , HOU Y C , et al. An FSS-integrated low-RCS radome design[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (10): 2076- 2080.
doi: 10.1109/LAWP.2019.2937556 |
| 14 |
PAZOKIAN M , KOMJANI N , KARIMIPOUR M . Broadband RCS reduction of microstrip antenna using coding frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (8): 1382- 1385.
doi: 10.1109/LAWP.2018.2846613 |
| 15 |
YU W L , YU Y F , WANG W L , et al. Low-RCS and gain-enhanced antenna using absorptive/transmissive frequency selective structure[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (11): 7912- 7917.
doi: 10.1109/TAP.2021.3083756 |
| 16 |
GENOVESI S , COSTA F , MONORCHIO A . Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces[J]. IEEE Trans. on Antennas and Propagation, 2012, 60 (5): 2327- 2335.
doi: 10.1109/TAP.2012.2189701 |
| 17 | WANG W T , GONG S X , WANG X , et al. RCS reduction of array antenna by using bandstop FSS reflector[J]. Journal of Electromagnetic Waves and Applications, 2009, 23 (11/12): 1505- 1514. |
| 18 |
ZHANG W B , LIU Y , GONG S X , et al. Wideband RCS reduction of a slot array antenna using phase gradient metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 2193- 2197.
doi: 10.1109/LAWP.2018.2870863 |
| 19 | LI B , LIU X B , YANG C , et al. Planar phase gradient metasurface antenna with low RCS[J]. IEEE Access, 2018, 7, 78839- 78845. |
| 20 |
CHENG Y F , FENG J , LIAO C , et al. Analysis and design of wideband low-RCS wide-scan phased array with AMC ground[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20 (2): 209- 213.
doi: 10.1109/LAWP.2020.3044533 |
| 21 |
DING X , CHENG Y F , SHAO W , et al. A planar wide-angle scanning phased array with X-, Ku-, and K-band RCS reduction[J]. IEEE Trans. on Antennas and Propagation, 2020, 68 (5): 4103- 4108.
doi: 10.1109/TAP.2019.2949476 |
| 22 |
HUANG H , OMAR A A , SHEN Z X . Low-RCS and beam-steerable dipole array using absorptive frequency-selective reflection structures[J]. IEEE Trans. on Antennas and Propagation, 2020, 68 (3): 2457- 2462.
doi: 10.1109/TAP.2019.2943322 |
| 23 |
HUANG H , SHEN Z X , OMAR A A . 3-D absorptive frequency selective reflector for antenna radar cross section reduction[J]. IEEE Trans. on Antennas and Propagation, 2017, 65 (11): 5908- 5917.
doi: 10.1109/TAP.2017.2751670 |
| 24 |
ZHANG B C , JIN C , LV Q H , et al. Low-RCS and wideband reflectarray antenna with high radiation efficiency[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (7): 4212- 4216.
doi: 10.1109/TAP.2020.3044660 |
| 25 |
HUANG H , SHEN Z X . Low-RCS reflectarray with phase controllable absorptive frequency-selective reflector[J]. IEEE Trans. on Antennas and Propagation, 2019, 67 (1): 190- 198.
doi: 10.1109/TAP.2018.2876708 |
| 26 |
MEI P , LIN X Q , YU J W , et al. A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome[J]. IEEE Trans. on Antennas and Propagation, 2018, 66 (1): 409- 413.
doi: 10.1109/TAP.2017.2767645 |
| 27 |
LV Q H , JIN C , ZHANG B C , et al. Hybrid absorptive-diffusive frequency delective radome[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (6): 3312- 3321.
doi: 10.1109/TAP.2020.3037644 |
| 28 |
WANG X , QIN P Y , JIN R H . Low RCS transmitarray employing phase controllable absorptive frequency-selective transmission elements[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (4): 2398- 2403.
doi: 10.1109/TAP.2020.3023796 |
| 29 |
YANG P , YAN F , YANG F , et al. Microstrip phased-array in-band RCS reduction with a random element rotation technique[J]. IEEE Trans. on Antennas and Propagation, 2016, 64 (6): 2513- 2518.
doi: 10.1109/TAP.2016.2543781 |
| 30 |
LIU Y , JIA Y T , ZHANG W B , et al. An integrated radiation and scattering performance design method of low-RCS patch antenna array with different antenna elements[J]. IEEE Trans. on Antennas and Propagation, 2019, 67 (9): 6199- 6204.
doi: 10.1109/TAP.2019.2925194 |
| 31 |
YANG H H , LI T , XU L M , et al. Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (3): 1239- 1248.
doi: 10.1109/TAP.2020.3016161 |
| 32 |
YIN L , YANG P , GAN Y Y , et al. A low cost, low in-band RCS microstrip phased-array antenna with integrated 2-bit phase shifter[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (8): 4517- 4526.
doi: 10.1109/TAP.2020.3048575 |
| 33 |
LIU Y , ZHANG W B , JIA Y T , et al. Low RCS antenna array with reconfigurable scattering patterns based on digital antenna units[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (1): 572- 577.
doi: 10.1109/TAP.2020.3004993 |
| 34 | MUNK B A . Frequency selective surfaces theory and design[M]. New York: Wiley, 2000. |
| 35 |
IDRIS S H , HADZER C M . Analysis of the radiation resis-tance and gain of a full-wave dipole[J]. IEEE Antennas and Propagation Magazine, 1994, 36 (5): 45- 47.
doi: 10.1109/74.334923 |
| [1] | 张瑞斌, 朱梦韬, 李云杰. 对调制识别网络隐身的雷达发射信号生成方法[J]. 系统工程与电子技术, 2024, 46(7): 2256-2268. |
| [2] | 袁伟力, 汤新民, 顾俊伟. 基于天线方向性参数辨识的航空器测向研究[J]. 系统工程与电子技术, 2024, 46(7): 2446-2455. |
| [3] | 张勇芳, 高晶钰, 刘涓. 单参考阵元旋转电场矢量法校准相控阵天线[J]. 系统工程与电子技术, 2024, 46(5): 1525-1534. |
| [4] | 陈博, 王伟, 刘涓, 吉建民. 星载低剖面一维相扫缝隙阵天线设计[J]. 系统工程与电子技术, 2024, 46(10): 3285-3292. |
| [5] | 刘俊, 崔宁, 谢佳昕, 行坤. 基于NSGA-Ⅲ的机载雷达空空射频隐身探测参数设计[J]. 系统工程与电子技术, 2024, 46(1): 97-104. |
| [6] | 陈洋, 肖国尧, 全英汇, 任爱锋, 别博文, 邢孟道. 基于多核DSP的星载双基FMCW SAR成像算法实现[J]. 系统工程与电子技术, 2024, 46(1): 121-129. |
| [7] | 谭啸, 杨志伟, 何鹏远, 吴翔宇. 星载双基跟飞构型的杂波特性分析及参数选择[J]. 系统工程与电子技术, 2023, 45(9): 2735-2743. |
| [8] | 毛飞龙, 焦义文, 马宏, 韩久江, 高泽夫, 李超, 李冬. 基于GPU的天线组阵信号时延补偿方法[J]. 系统工程与电子技术, 2023, 45(8): 2383-2394. |
| [9] | 牛亚丽, 许京伟, 廖桂生, 阚庆云, 刘广君. HPRF和差天线雷达导引头杂波抑制方法[J]. 系统工程与电子技术, 2023, 45(8): 2455-2462. |
| [10] | 倪萌钰, 陈辉, 王晓戈, 李槟槟, 张昭建. 同轨收发卫星雷达基线长度及杂波特性分析[J]. 系统工程与电子技术, 2023, 45(8): 2498-2505. |
| [11] | 贾金伟, 韩壮志, 刘利民, 解辉. 基于SDIF门限失效的雷达射频隐身信号设计原理[J]. 系统工程与电子技术, 2023, 45(6): 1693-1701. |
| [12] | 陈旭, 肖瑶, 杨凌宇, 张晶. 基于简化模型的天线罩寄生回路稳定性分析[J]. 系统工程与电子技术, 2023, 45(6): 1784-1796. |
| [13] | 王文益, 钟仁伟. 基于交替方向乘子法的单天线ADS-B信号分离[J]. 系统工程与电子技术, 2023, 45(5): 1286-1296. |
| [14] | 倪萌钰, 陈辉, 王晓戈, 程杨, 李槟槟. 星载双基地雷达杂波建模及特性分析[J]. 系统工程与电子技术, 2023, 45(4): 1024-1031. |
| [15] | 曾婷, 高帅, 孙富强, 赖小明, 李云, 李孝鹏. 人机环耦合效应下卫星天线装配概率风险分析[J]. 系统工程与电子技术, 2023, 45(2): 606-613. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||