系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (5): 1561-1574.doi: 10.12305/j.issn.1001-506X.2025.05.18
• 系统工程 • 上一篇
陈顶1, 方志耕2, 杨保华3, 叶丰4,*, 张娜5, 张靖如2
收稿日期:
2022-11-24
出版日期:
2025-06-11
发布日期:
2025-06-18
通讯作者:
叶丰
作者简介:
陈顶(1990—), 男, 高级工程师, 博士, 主要研究方向为体系工程、效能评估Ding CHEN1, Zhigeng FANG2, Baohua YANG3, Feng YE4,*, Na ZHANG5, Jingru ZHANG2
Received:
2022-11-24
Online:
2025-06-11
Published:
2025-06-18
Contact:
Feng YE
摘要:
体系效能评估指标数量多、维数高, 指标之间关联, 且具有协同效应, 加大了效能评估的计算复杂性。针对这一问题, 建立考虑协同效应的联合作战体系效能指标灰色主成分分析(grey principal component analysis, GPCA)重构模型。首先, 分析联合防空作战体系的作战使命、任务、流程, 构建其效能评估指标体系, 并运用灰色关联模型分析指标间是否存在协同效应。其次, 基于指标间存在的协同效应, 给出3种重构效能评估指标体系的策略, 并结合GPCA方法, 构建具有协同效应的GPCA模型, 对评估指标体系进行降维。最后, 将所提方法应用于联合防空作战体系效能评估案例, 筛选出具有协同效应的指标, 重构效能评估指标体系。计算结果与方法对比分析表明, 所提方法能够有效发现指标间的协同效应, 重构后的评估指标体系保持了“同构性”。
中图分类号:
陈顶, 方志耕, 杨保华, 叶丰, 张娜, 张靖如. 考虑指标协同效应重构的联合作战体系效能评估灰色主成分模型[J]. 系统工程与电子技术, 2025, 47(5): 1561-1574.
Ding CHEN, Zhigeng FANG, Baohua YANG, Feng YE, Na ZHANG, Jingru ZHANG. Grey principal component analysis model of effectiveness evaluation for joint operation system-of-systems considering indicator synergism reconstruction[J]. Systems Engineering and Electronics, 2025, 47(5): 1561-1574.
表2
评估指标数据"
评估指标 | 仿真样本 | |||||||||||
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | |
X1(+) | 550 | 400 | 650 | 400 | 450 | 400 | 500 | 500 | 400 | 400 | 450 | 400 |
X2(+) | 30 | 20 | 25 | 20 | 35 | 35 | 40 | 45 | 40 | 35 | 45 | 40 |
X3(-) | 15 | 10 | 40 | 20 | 25 | 30 | 44 | 35 | 50 | 35 | 40 | 45 |
X4(-) | 50 | 30 | 25 | 25 | 45 | 30 | 33 | 28 | 42 | 30 | 45 | 35 |
X5(+) | 750 | 900 | 800 | 950 | 1 000 | 850 | 900 | 1 000 | 850 | 1 000 | 750 | 800 |
X6(+) | 150 | 200 | 120 | 200 | 150 | 180 | 150 | 200 | 150 | 200 | 180 | 200 |
X7(+) | 20 | 35 | 25 | 30 | 25 | 35 | 40 | 30 | 35 | 40 | 40 | 30 |
X8(+) | 2 | 1 | 3 | 4 | 2 | 2 | 4 | 1 | 3 | 2 | 4 | 1 |
X9(-) | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 1 |
X10(-) | 6 | 7 | 7 | 8 | 7 | 6 | 6 | 7 | 6 | 7 | 7 | 6 |
X11(+) | 0.3 | 0.35 | 0.4 | 0.34 | 0.42 | 0.40 | 0.38 | 0.4 | 0.35 | 0.38 | 0.42 | 0.4 |
X12(+) | 0.6 | 0.7 | 0.78 | 0.62 | 0.78 | 0.75 | 0.72 | 0.73 | 0.72 | 0.75 | 0.78 | 0.75 |
X13(+) | 0.82 | 0.85 | 0.8 | 0.75 | 0.85 | 0.87 | 0.90 | 0.88 | 0.85 | 0.87 | 0.78 | 0.80 |
样本效果 | 0.690 6 | 0.782 8 | 0.732 5 | 0.810 6 | 0.881 2 | 0.875 | 0.931 8 | 0. 916 2 | 0.865 6 | 0. 890 6 | 0.823 7 | 0.859 3 |
表4
选取特征值对应的特征向量"
协同效应指标 | 灰色关联度矩阵特征值 | ||||
μ1 | μ2 | μ3 | μ4 | μ5 | |
X1X2X6 | 0.280 8 | 0.089 6 | -0.17 | -0.156 8 | 0.034 3 |
X1X2X10 | 0.27 | -0.278 7 | -0.016 4 | 0.452 1 | 0.043 |
X2X10 | 0.279 2 | -0.01 | -0.251 | -0.297 2 | -0.066 8 |
X3 | 0.253 2 | 0.446 1 | 0.222 8 | -0.161 | 0.094 9 |
X4 | 0.259 8 | 0.031 9 | -0.438 8 | -0.301 9 | -0.095 4 |
X5 | 0.278 4 | -0.401 1 | -0.147 | 0.051 6 | 0.040 8 |
X7 | 0.264 4 | -0.030 7 | 0.204 5 | -0.401 | 0.105 7 |
X8 | 0.224 1 | 0.666 7 | -0.327 1 | 0.442 8 | 0.157 |
X9 | 0.261 1 | 0.153 7 | 0.687 8 | 0.076 9 | -0.072 1 |
X10 | 0.276 | -0.216 2 | 0.015 5 | 0.428 4 | 0.003 8 |
X11 | 0.271 6 | -0.009 8 | 0.034 1 | 0.025 8 | -0.556 5 |
X12 | 0.274 2 | -0.032 3 | 0.008 2 | 0.043 1 | -0.438 1 |
X13 | 0.268 7 | -0.177 5 | 0.020 9 | -0.035 4 | 0.638 4 |
X12X13 | 0.274 8 | -0.069 8 | 0.141 9 | -0.113 | 0.149 7 |
表5
因子载荷矩阵"
协同效应指标 | 特征向量提取主成分 | ||||
F1 | F2 | F3 | F4 | F5 | |
X1X2X6 | 0.296 8 | 0.060 8 | -0.161 8 | -0.139 9 | -0.063 3 |
X1X2X10 | 0.237 5 | -0.05 | 0.064 3 | 0.540 5 | -0.044 2 |
X2X10 | 0.294 9 | -0.090 1 | -0.260 3 | -0.220 8 | -0.149 2 |
X3 | 0.224 3 | 0.375 | 0.218 3 | -0.329 3 | -0.023 9 |
X4 | 0.280 3 | -0.052 2 | -0.450 8 | -0.221 5 | -0.166 5 |
X5 | 0.315 7 | -0.309 1 | -0.104 | 0.239 | -0.035 9 |
X7 | 0.313 5 | -0.149 2 | 0.188 2 | -0.358 7 | 0.008 |
X8 | 0.172 7 | 0.825 8 | -0.265 1 | 0.196 5 | 0.041 6 |
X9 | 0.134 3 | 0.169 2 | 0.702 1 | -0.053 | -0.183 3 |
X10 | 0.224 3 | -0.005 8 | 0.09 | 0.490 7 | -0.086 4 |
X11 | 0.060 7 | -0.020 8 | 0.027 5 | 0.034 8 | -0.615 9 |
X12 | 0.104 9 | -0.023 2 | 0.011 3 | 0.063 8 | -0.504 4 |
X13 | 0.481 | -0.090 9 | 0.080 6 | 0.058 9 | 0.513 3 |
X12X13 | 0.312 2 | -0.068 6 | 0.161 5 | -0.0727 | 0.046 1 |
表6
原指标体系的灰色关联度矩阵表"
εij | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 |
X1 | 1 | 0.640 6 | 0.611 4 | 0.706 8 | 0.736 6 | 0.682 6 | 0.647 9 | 0.562 3 | 0.592 5 | 0.771 5 | 0.769 6 | 0.757 7 | 0.798 4 |
X2 | 1 | 0.734 7 | 0.758 8 | 0.741 6 | 0.767 0 | 0.750 8 | 0.633 9 | 0.689 2 | 0.728 1 | 0.772 7 | 0.781 3 | 0.779 8 | |
X3 | 1 | 0.638 8 | 0.644 8 | 0.651 3 | 0.715 7 | 0.656 0 | 0.715 2 | 0.667 1 | 0.690 4 | 0.691 2 | 0.670 5 | ||
X4 | 1 | 0.712 8 | 0.686 0 | 0.727 3 | 0.615 0 | 0.593 6 | 0.720 4 | 0.753 8 | 0.759 4 | 0.732 7 | |||
X5 | 1 | 0.795 0 | 0.724 8 | 0.531 2 | 0.597 5 | 0.839 6 | 0.813 9 | 0.821 3 | 0.850 6 | ||||
X6 | 1 | 0.715 0 | 0.515 5 | 0.608 9 | 0.799 5 | 0.750 0 | 0.753 6 | 0.739 8 | |||||
X7 | 1 | 0.523 1 | 0.714 5 | 0.678 5 | 0.713 5 | 0.721 6 | 0.747 1 | ||||||
X8 | 1 | 0.573 9 | 0.608 1 | 0.592 4 | 0.603 2 | 0.579 0 | |||||||
X9 | 1 | 0.771 2 | 0.809 2 | 0.800 7 | 0.777 6 | ||||||||
X10 | 1 | 0.705 9 | 0.718 1 | 0.705 8 | |||||||||
X11 | 1 | 0.750 3 | 0.609 2 | ||||||||||
X12 | 1 | 0.633 4 | |||||||||||
X13 | 1 |
表7
重构指标体系与原指标体系灰色主成分及方差贡献率对比分析"
主成分 | 特征值及方差贡献率 | 主成分 | 特征值及方差贡献率 | |||||||
特征值 | 方差贡献率% | 累积方差贡献率% | 特征值 | 方差贡献率% | 累积方差贡献率% | |||||
原指标体系 | 1 | 9.432 3 | 72.56 | 72.56 | 适度策略 | 1 | 10.261 7 | 73.30 | 73.30 | |
2 | 0.662 2 | 5.09 | 77.65 | 2 | 0.632 1 | 4.52 | 77.82 | |||
3 | 0.510 2 | 3.92 | 81.57 | 3 | 0.501 1 | 3.58 | 81.40 | |||
4 | 0.443 4 | 3.41 | 84.98 | 4 | 0.491 0 | 3.51 | 84.91 | |||
5 | 0.423 0 | 3.25 | 88.23 | 5 | 0.444 0 | 3.17 | 88.08 | |||
保守策略 | 1 | 12.301 1 | 72.36 | 72.36 | 激进策略 | 1 | 8.045 0 | 73.14 | 73.14 | |
2 | 0.877 5 | 5.16 | 77.52 | 2 | 0.594 7 | 5.41 | 78.55 | |||
3 | 0.605 5 | 3.56 | 81.08 | 3 | 0.484 9 | 4.41 | 82.96 | |||
4 | 0.539 5 | 3.17 | 84.25 | 4 | 0.415 3 | 3.78 | 86.74 | |||
5 | 0.513 9 | 3.02 | 87.27 | — | — | — | — |
表8
不同降维算法对比结果"
主成分 | 本文方法 | GPCA | PCA | KPCA | |||||||||||
特征值 | 方差贡献率% | 累积方差贡献率% | 特征值 | 方差贡献率% | 累积方差贡献率% | 特征值 | 方差贡献率% | 累积方差贡献率% | 特征值 | 方差贡献率% | 累积方差贡献率% | ||||
1 | 10.261 7 | 73.30 | 73.30 | 9.432 3 | 72.56 | 72.56 | 3.526 4 | 27.13 | 27.13 | 0.238 1 | 26.27 | 26.27 | |||
2 | 0.632 1 | 4.52 | 77.82 | 0.662 2 | 5.09 | 77.65 | 2.773 8 | 21.34 | 48.47 | 0.189 0 | 20.86 | 47.13 | |||
3 | 0.501 1 | 3.58 | 81.40 | 0.510 2 | 3.92 | 81.57 | 1.880 7 | 14.47 | 62.94 | 0.129 9 | 14.33 | 61.46 | |||
4 | 0.491 0 | 3.51 | 84.91 | 0.443 4 | 3.41 | 84.98 | 1.539 5 | 11.84 | 74.78 | 0.107 1 | 11.82 | 73.28 | |||
5 | 0.444 0 | 3.17 | 88.08 | 0.422 9 | 03.25 | 88.23 | 1.199 0 | 9.22 | 84.00 | 0.084 6 | 9.34 | 82.62 | |||
6 | — | — | — | — | — | — | 0.863 6 | 6.64 | 90.64 | 0.061 6 | 6.79 | 89.41 |
1 | 陈清霖,田鸿堂,王鹏,等.基于"OODA"环的分布式协同作战武器编配方案[J].兵工学报,2021,42(8):1780-1788. |
CHENQ L,TIANH T,WANGP.Distributed cooperative warfare weapon allocation scheme based on "OODA" ring[J].Acta Armamentaria,2021,42(8):1780-1788. | |
2 |
杨克巍,杨志伟,谭跃进,等.面向体系贡献率的装备体系评估方法研究综述[J].系统工程与电子技术,2019,41(2):311-321.
doi: 10.3969/j.issn.1001-506X.2019.02.13 |
YANGK W,YANGZ W,TANY J,et al.Summary of research on evaluation methods of equipment system of systems oriented to system contribution rate[J].Systems Engineering and Electronics,2019,41(2):311-321.
doi: 10.3969/j.issn.1001-506X.2019.02.13 |
|
3 | 刘泽宇,董晨,师鹏,等.防空体系作战能力评估方法[J].火力与指挥控制,2019,44(11):35-40. |
LIUZ Y,DONGC,SHIP,et al.Evaluation method of air defense system operational capability[J].Fire Control & Command Control,2019,44(11):35-40. | |
4 |
FANGZ G,WUS,ZHANGX L,et al.ADC-GERT network parameter estimation model for mission effectiveness of joint operation system[J].Journal of Systems Engineering and Electronics,2021,32(6):1394-1406.
doi: 10.23919/JSEE.2021.000119 |
5 | HUANG Y H, NING X. Process prediction method of networked ammunition cooperative operation based on effectiveness evaluation[C]//Proc. of the IEEE International Conference on Industrial Application of Artificial Intelligence, 2020: 385-391. |
6 | 郭铖飞. 基于体系建模的装备体系效能评估方法研究[D]. 成都: 电子科技大学, 2022. |
GUO C F. Research on effectiveness evaluation method of equip ment system of systems based on system of systems modeling[D]. Cheng du: University of Electronic Science and Technology of China, 2022. | |
7 |
GAUDIOL,KOBAYASHIM,CAIREG,et al.On the effectiveness of OTFS for joint radar parameter estimation and communication[J].IEEE Trans.on Wireless Communications,2020,19(9):5951-5965.
doi: 10.1109/TWC.2020.2998583 |
8 | WANGZ,LIUS F,FANGZ G.Research on SoS-GERT network model for equipment system of systems contribution evaluation based on joint operation[J].IEEE Systems Journal,2019,14(3):4188-4196. |
9 | 胡磊,李昊,闫世强,等.预警卫星系统作战效能评估指标体系构建[J].火力与指挥控制,2015,40(5):65-68, 73. |
HUL,LIH,YANS Q,et al.Establishment of operational effectiveness evaluation index system for early warning satellite system[J].Fire Control & Command Control,2015,40(5):65-68, 73. | |
10 | 丁剑飞,司光亚,石亚峰,等.基于融合流形学习的体系多维效能指标可视化[J].系统仿真学报,2017,29(10):2373-2383. |
DINGJ F,SIG Y,SHIY F,et al.Visualization of multi-dimensional effectiveness indicator of weapon system of systems based on fusion manifold learning[J].Journal of System Simulation,2017,29(10):2373-2383. | |
11 | 宋敬华,林清享,李亮.指控装备作战效能评估指标体系构建[J].指挥控制与仿真,2020,42(5):47-50. |
SONGJ H,LINQ X,LIL.Construction of operational effectiveness evaluation index system for command and control equip-ment[J].Command Control & Simulation,2020,42(5):47-50. | |
12 | 范鹏程,祝利,安永旺,等.基于PFT的航天电子侦察系统作战效能指标体系构建[J].航天电子对抗,2017,33(4):26-30. |
FANP C,ZHUL,ANY W,et al.Construction of operational effectiveness index system of aerospace electronic reconnaissance system based on PFT[J].Aerospace Electronic Warfare,2017,33(4):26-30. | |
13 | 孟庆操,杨光.航母编队防空作战效能评估指标体系构建[J].舰船电子工程,2015,35(10):1-4, 61. |
MENGQ C,YANGG.Construction of air defense operational effectiveness evaluation index system for aircraft carrier format ion[J].Ship Electronic Engineering,2015,35(10):1-4, 61. | |
14 |
PARTRIDENGM,CALVOR A.Fast dimensionality reduc- tion and simple PCA[J].Intelligent Data Analysis,1998,2(3):203-214.
doi: 10.3233/IDA-1998-2304 |
15 |
YATAK,AOSHIMAM.Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations[J].Journal of Multivariate Analysis,2012,105(1):193-215.
doi: 10.1016/j.jmva.2011.09.002 |
16 | 李海君,徐廷学.基于PCA的区域装备保障能力评估方法[J].火力与指挥控制,2022,47(3):35-39. |
LIH J,XUT X.Evaluation method of regional equipment support capability based on principal component analysis[J].Fire Control & Command Control,2022,47(3):35-39. | |
17 | 孙云柯,方志耕,陈顶.基于动态GPCA的多时刻威胁评估[J].系统工程与电子技术,2021,43(3):740-746. |
SUNY K,FANGZ G,CHEND.Multi time threat assessment based on dynamic grey principal component analysis[J].Systems Engineering and Electronics,2021,43(3):740-746. | |
18 |
COLOSIMOB M,GRASSOM.Spatially weighted PCA for monitoring video image data with application to additive manu facturing[J].Journal of Quality Technology,2018,50(4):391-417.
doi: 10.1080/00224065.2018.1507563 |
19 | 鞠儒生,蔡子民,杨妹,等.基于PCA的仿真结果评估方法[J].系统仿真学报,2019,31(12):2678-2684. |
JUR S,CAIZ M,YANGM,et al.Evaluation method of simu lation results based on principal component analysis[J].Journal of System Simulation,2019,31(12):2678-2684. | |
20 | 杜柏阳,孔祥玉,冯晓伟.基于广义PCA的重构故障子空间建模方法[J].控制与决策,2021,36(4):808-814. |
DUB Y,KONGX Y,FENGX W.Fault subspace modeling method based on generalized principal component analysis[J].Control and Decision,2021,36(4):808-814. | |
21 | 胡钢,徐翔,张维明,等.基于PCA的网络节点重要性指标贡献评价[J].电子学报,2019,47(2):358-365. |
HUG,XUX,ZHANGW M,et al.Evaluation of contribu tion of network node importance index based on principal component analysis[J].Acta Electronica Sinica,2019,47(2):358-365. | |
22 |
JIANGQ C,YANX F.Parallel PCA-KPCA for nonlinear process monitoring[J].Control Engineering Practice,2018,80,17-25.
doi: 10.1016/j.conengprac.2018.07.012 |
23 |
SALOF,NASSIFA B,ESSEXA.Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection[J].Computer Networks,2019,148,164-175.
doi: 10.1016/j.comnet.2018.11.010 |
24 | LIU X M, HAN Y, QIU H Z, et al. Threat evaluation in air defense based on improved KPCA-TOPSIS[C]//Proc. of the IEEE Guidance, Navigation and Control Conference, 2018. |
25 | MENG F Z, FU Y S, LOU F. A network threat analysis method combined with kernel PCA and LSTM-RNN[C]//Proc. of the 10th International Conference on Advanced Computational Intelligence, 2018: 508-513. |
26 | 董雪,张德平.基于组合核PCA的潜艇威胁度评估模型[J].计算机工程,2018,44(11):46-51. |
DONGX,ZHANGD P.Submarine threat assessment model based on combined kernel principal component analysis[J].Computer Engineering,2018,44(11):46-51. | |
27 | 黄宁.关于PCA应用的思考[J].数理统计与管理,1999,18(5):44-46. |
HUANGN.The application and consideration about principal component analysis[J].Journal of Applied Statistics and Mana gement,1999,18(5):44-46. | |
28 |
HUQ,QINA S,ZHANGQ H,et al.Fault diagnosis based on weighted extreme learning machine with wavelet packet de composition and KPCA[J].IEEE Sensors Journal,2018,18(20):8472-8483.
doi: 10.1109/JSEN.2018.2866708 |
29 | JIANGQ C,YANX F.Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference[J].Chemometrics and Intelligent Laboratory Systems,2014,136(15):121-137. |
30 |
WANGY W,ZHOUD H,CHENM Y,et al.Weighted part mutual information related component analysis for quality-related process monitoring[J].Journal of Process Control,2020,88,111-123.
doi: 10.1016/j.jprocont.2020.03.001 |
31 | 袁周,方志耕.灰色主成分评价模型的构建及其应用[J].系统工程理论与实践,2016,36(8):2086-2090. |
YUANZ,FANGZ G.Construction and application of grey principal component evaluation model[J].Systems Engineering-Theory & Practice,2016,36(8):2086-2090. | |
32 | 王玲玲,方志耕.分层构权灰色主成分评价模型及其应用[J].控制与决策,2019,34(6):1300-1306. |
WANGL L,FANGZ G.Hierarchical weight grey principal component evaluation model and its application[J].Control and Decision,2019,34(6):1300-1306. | |
33 |
HUANGY S,SHENL,LIUH.Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China[J].Journal of Cleaner Production,2019,209,415-423.
doi: 10.1016/j.jclepro.2018.10.128 |
34 | SUNY K,FANGZ.Research on projection gray target model based on FANP-QFD for weapon system of systems capability evaluation[J].IEEE Systems Journal,2020,15(3):4126-4136. |
35 | 李妮,李玉红,龚光红,等.基于深度学习的体系作战效能智能评估及优化[J].系统仿真学报,2020,32(8):1425-1435. |
LIN,LIY H,GONGG H,et al.Intelligent effectiveness evaluation and optimization on weapon system of systems based on deep learning[J].Journal of System Simulation,2020,32(8):1425-1435. | |
36 | SUNQ,LIH X,WANGY Z,et al.Multi-swarm-based coope rative reconfiguration model for resilient unmanned weapon system-of-systems[J].Reliability Engineering & System Safety,2022,222,108426. |
37 | HAKENH.The science of structure: synergetic[M].New York:Van Nostrand Reinhold,1981. |
38 | 杨建辉,杨伦.农产品质量安全内部协调度和耦合度测算及影响因素分析[J].自然资源学报,2022,37(2):494-507. |
YANGJ H,YANGL.Influence of agricultural factor input regulation on internal disturbance and coupling of agro-product quality and safety[J].Journal of Natural Resources,2022,37(2):494-507. | |
39 | 刘微微,孙茹.高端装备制造业企业知识创新与技术创新耦合度测度研究[J].科学学与科学技术管理,2014,35(7):16-22. |
LIUW W,SUR.Research on coupling degree measurement between technological innovation of high-end equipment knowledge innovation and manufacturing enterprises[J].Science of Science and Management of S.&T.,2014,35(7):16-22. | |
40 | 马茹,罗晖,王宏伟,等.中国区域经济高质量发展评价指标体系及测度研究[J].中国软科学,2019(7):60-67. |
MAR,LUOH,WANGH W,et al.Study of evaluating high-quality economic development in Chinese regions[J].China Soft Science Magazine,2019(7):60-67. | |
41 | 华坚,胡金昕.中国区域科技创新与经济高质量发展耦合关系评价[J].科技进步与对策,2019,36(8):19-27. |
HUAJ,HUJ X.Analysis on the coupling relationship between technology innovation and high quality economic develop ment[J].Science & Technology Progress and Policy,2019,36(8):19-27. | |
42 | 吕长江,韩慧博.业绩补偿承诺、协同效应与并购收益分配[J].审计与经济研究,2014,29(6):3-13. |
LVC J,HANH B.VAM, synergy and distribution of gains from M&A[J].Journal of Audit & Economic,2014,29(6):3-13. | |
43 | 陈晓红,张嘉敏,唐湘博.中国工业减污降碳协同效应及其影响机制[J].资源科学,2022,44(12):2387-2398. |
CHENX H,ZHANGJ M,TANGX B.Synergistic effect of industrial air pollution and carbon emission reduction in China and influencing mechanism[J].Resources Science,2022,44(12):2387-2398. | |
44 | 葛铱健,姚西龙,王华玲,等.可再生能源和能效政策的协同效应研究[J].系统科学学报,2023,31(3):109-115. |
GEY J,YAOX L,WANGH L,et al.Research on the sy- nergy of renewable energy incentives and energy efficiency policies[J].Journal of Systems Science,2023,31(3):109-115. | |
45 | 甄俊杰,师博,张新月.中国数字创新与经济高质量发展的协同效应及动态演进预测[J].现代财经——天津财经大学学报,2023,43(3):3-20. |
ZHENJ J,SHIB,ZHANGX Y.Synergistic effect and dynamic evolution prediction of digital innovation and high-quality economic development in China[J].Modern Finance & Economics (Journal of Tianjin University of Finance and Economics),2023,43(3):3-20. | |
46 | 陆剑宝.基于制造业集聚的生产性服务业业协同效应研究[J].管理学报,2014,11(3):396-401. |
LUJ B.Coordination effect of producer service based on manufacturing agglomeration[J].Chinese Journal of Management,2014,11(3):396-401. |
[1] | 赵潞, 方志耕, 于亮, 张亚东, 邱玺睿, 华晨晨. 基于灰色关联协同效应权重配置的费用预测模型[J]. 系统工程与电子技术, 2024, 46(4): 1309-1319. |
[2] | 高山, 智永锋, 张普, 左轩. 基于改进灰色关联分析的航天产品性能样机仿真结果一致性验证方法[J]. 系统工程与电子技术, 2023, 45(9): 2777-2783. |
[3] | 李昕泽, 周文雅, 刘凯, 王博. 可达区域内最佳着陆场的筛选方法[J]. 系统工程与电子技术, 2023, 45(6): 1712-1721. |
[4] | 衣晓, 曾睿, 曹昕莹. 利用k近邻区间距离的异步抗差航迹关联算法[J]. 系统工程与电子技术, 2022, 44(5): 1475-1482. |
[5] | 衣晓, 曾睿. 基于k近邻平均距离的异步航迹关联算法[J]. 系统工程与电子技术, 2022, 44(11): 3515-3521. |
[6] | 张军涛, 李尚生, 王旭坤. 基于灰色关联-模糊综合评判的雷达抗干扰性能评估方法[J]. 系统工程与电子技术, 2021, 43(6): 1557-1563. |
[7] | 高昂, 郭齐胜, 董志明, 杨绍卿. 基于EAS+MADRL的多无人车体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43(12): 3643-3651. |
[8] | 奚之飞, 徐安, 寇英信, 李战武, 杨爱武. 基于灰主成分的空战目标威胁评估[J]. 系统工程与电子技术, 2021, 43(1): 147-155. |
[9] | 林圣琳, 李伟, 马萍, 杨明. 基于Hilbert-Huang变换的仿真模型排序评估方法[J]. 系统工程与电子技术, 2017, 39(9): 2137-2142. |
[10] | 许丹, 陈志军, 王前程, 陈云霞, 康锐. 基于空间相似性和波动阈值的退化模型一致性检验方法[J]. 系统工程与电子技术, 2015, 37(2): 455-459. |
[11] | 胡玉伟, 马萍, 杨明, 王子才. 一种时频结合分析的仿真结果动态一致性检验方法[J]. Journal of Systems Engineering and Electronics, 2013, 35(3): 643-649. |
[12] | 焦松, 李伟, 杨明. 基于经验模态分解和灰色关联度分析的仿真模型验证方法[J]. 系统工程与电子技术, 2013, 35(12): 2613-2618. |
[13] | 付雅芳, 杨任农, 刘晓东, 王琳. 基于灰色关联分析的软件工作量估算方法[J]. Journal of Systems Engineering and Electronics, 2012, 34(11): 2384-2389. |
[14] | 蒋英杰, 孙志强, 宫二玲, 谢红卫. 情景环境与人为差错的对应关系分析方法[J]. Journal of Systems Engineering and Electronics, 2011, 33(12): 2782-2787. |
[15] | 吴静,吴晓燕,陈永兴,滕江川. 基于改进灰色关联分析的仿真模型验证方法[J]. Journal of Systems Engineering and Electronics, 2010, 32(8): 1677-1679. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||