系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3816-3825.doi: 10.12305/j.issn.1001-506X.2025.11.28

• 制导、导航与控制 • 上一篇    

基于目标群拓扑特征的飞行器集群相对定位

牟新刚1, 彭文凯1, 管叙军2,3,*, 付文兴3, 郝明瑞3   

  1. 1. 武汉理工大学机电工程学院,湖北 武汉 430070
    2. 北京航空航天大学自动化科学与电气工程学院,北京 100191
    3. 复杂系统控制与智能协同全国重点实验室,北京 100074
  • 收稿日期:2024-12-18 出版日期:2025-11-25 发布日期:2025-12-08
  • 通讯作者: 管叙军
  • 作者简介:牟新刚(1982—),男,教授,博士,主要研究方向为红外成像、目标检测与跟踪、集群协同探测
    彭文凯(2000—),男,硕士研究生,主要研究方向为协同定位、数据融合、多目标跟踪
    付文兴(1979—),男,研究员,硕士,主要研究方向为匹配定位、多源融合
    郝明瑞(1985—),男,研究员,博士,主要研究方向为智能决策、协同控制
  • 基金资助:
    国家自然科学基金(62475200)资助课题

Relative positioning of aircraft cluster based on topological features of target group

Xingang MOU1, Wenkai PENG1, Xujun GUAN2,3,*, Wenxing FU3, Mingrui HAO3   

  1. 1. School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan 430070,China
    2. School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
    3. National Key Laboratory of Complex System Control and Intelligent Agent Cooperation,Beijing 100074,China
  • Received:2024-12-18 Online:2025-11-25 Published:2025-12-08
  • Contact: Xujun GUAN

摘要:

飞行器集群自身的高精度定位是执行协同任务的必要前提,针对全球卫星导航系统(Global Navigation Satellite System,GNSS)拒止且环境特征信息受限的多目标协同探测场景,利用集群内数据链仅测距以及对多目标的探测信息,提出一种基于目标群拓扑特征的协同定位方法。通过多维标度(multidimensional scaling,MDS)构建数据链测距多面体,根据目标群三维拓扑特征对目标关联并建立相对定位最优化模型,利用带压缩因子的改进粒子群优化(particle swarm optimization,PSO)算法获取测距多面体姿态的最优解。仿真结果表明,能够获得较高的集群相对定位精度,同时结合惯性导航系统(inertial navigation system,INS)位置输出提升了飞行器集群的绝对位置精度。

关键词: 相对定位, 目标关联, 多维标度, 粒子群优化

Abstract:

High-precision positioning of aircraft clusters is a necessary prerequisite for executing cooperative tasks. Aiming at the scenarios of multi target collaborative detection where the Global Navigation Satellite System (GNSS) is denied and environmental feature information is limited, a cooperative positioning method based on the topological features of target groups is proposed. This method uses only the distance measurements from the data link within the cluster and the multi target detection information. A distance-measurement polyhedron is constructed using multidimensional scaling (MDS), and target association is performed based on the three-dimensional topological features of the target group. A relative positioning optimization model is then established. The optimal solution for the polyhedron’s attitude is obtained by using an improved particle swarm optimization (PSO) algorithm with a compression factor. Simulation results demonstrate that high relative positioning accuracy of the cluster can be achieved. Combined with the inertial navigation system (INS) position output, the absolute positioning accuracy of the aircraft cluster is also improved.

Key words: relative positioning, target association, multidimensional scaling (MDS), particle swarm optimization (PSO)

中图分类号: