

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3802-3815.doi: 10.12305/j.issn.1001-506X.2025.11.27
• 制导、导航与控制 • 上一篇
赖康, 陆中, 程大炜, 缪炜润
收稿日期:2024-06-03
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
陆中
作者简介:赖 康 (2000—),男,硕士研究生,主要研究方向为系统安全性分析基金资助:Kang LAI, Zhong LU, Dawei CHENG, Weirun MIAO
Received:2024-06-03
Online:2025-11-25
Published:2025-12-08
Contact:
Zhong LU
摘要:
为解决传统电传飞控系统安全性分析过度依赖分析人员经验的问题,综合利用系统建模语言(system modeling language,SysML)和新符号模型验证器(new symbolic model verifier,NuSMV)描述系统行为,提出一种基于模型的安全性分析方法。首先,利用SysML建立电传飞控系统的名义模型和故障模型,提出面向SysML的故障信息提取方法。然后,建立SysML和NuSMV模型的映射规则,利用提取的故障信息自动生成描述系统故障行为的NuSMV模型。最后,通过模型检测实现电传飞控系统的安全性分析。该方法避免了对人员技术和经验的依赖,并且安全性分析结果由设计模型直接生成。当设计方案修改时能自动更新安全分析结果,避免重新开展安全性分析带来的繁琐工作。
中图分类号:
赖康, 陆中, 程大炜, 缪炜润. 基于SysML2NuSMV的民用飞机电传飞控系统安全性分析[J]. 系统工程与电子技术, 2025, 47(11): 3802-3815.
Kang LAI, Zhong LU, Dawei CHENG, Weirun MIAO. Safety analysis of civil aircraft fly-by-wire system based on SysML2NuSMV[J]. Systems Engineering and Electronics, 2025, 47(11): 3802-3815.
表3
构件的故障类型及故障率"
| 构件 | 故障类型 | 故障描述 | 故障率/FH |
| PFC | F_stuck | 输出卡滞 | 1E-7 |
| F_random | 随机输出 | 1E-7 | |
| F_omission | 无响应 | 2E-7 | |
| ACE | A_stuck | 输出卡滞 | 4E-7 |
| A_random | 随机输出 | 1E-7 | |
| A_omission | 无响应 | 2E-7 | |
| REU | R_stuck | 输出卡滞 | 1E-8 |
| R_omission | 无响应 | 1E-8 | |
| PCU | P_jam | 机械卡阻 | 1E-6 |
| P_omission | 无响应 | 1E-6 | |
| 传感器 | S_omission | 无响应 | 4E-7 |
| S_stuck | 输出卡滞 | 4E-7 | |
| S_random | 随机输出 | 4E-7 | |
| BCM | B_stuck | 输出卡滞 | 4E-7 |
| B_random | 随机输出 | 1E-7 | |
| B_omission | 无响应 | 2E-7 |
表4
SysML模型与XML文档中的表达对应关系"
| SysML模型 | SysML模型在XML文档中的表达 |
| 系统模块 | <UML:Class name="…" xmi.id="…"> <UML:Stereotype name="System"/> </UML:Class> |
| 组件模块 | <UML:Class name="…" xmi.id="…"> <UML:Stereotype name="Component"/> </UML:Class> |
| 组成部分属性 | <UML:ClassifierRole name="…" xmi.id="…"> <UML:TaggedValue tag="owner" value="…"/> <UML:TaggedValue tag="propertyType" value="…"/> </UML:ClassifierRole> |
| 端口 | <UML:Class name="…" xmi.id="…"> <UML:TaggedValue tag="ea_stype" value="Port"/> <UML:TaggedValue tag="owner" value="…"/> </UML:Class> |
| 连接器 | <UML:Association xmi.id="…"> <UML:TaggedValue tag="ea_type" value="Connector"/> <UML:Association.connection> </UML:Association.connection> </UML:Association> |
| 状态 | <UML:SimpleState name="…" xmi.id="…"> <UML:Stereotype name="…"/> <UML:TaggedValue tag="owner" value="…"/> <UML:TaggedValue tag="behavior" value="…"/> </UML:SimpleState> |
| 故障模式 | <UML:Class name="…" xmi.id="…"> <UML:Stereotype name="Failure Mode"/> </UML:Class> |
| 转换 | <UML:Transition xmi.id="…" source="…" target="…"> <UML:Event name="…"/> <UML:BooleanExpression body="…"/> <UML:TaggedValue tag="$ea_xref_property" value="…"/> </UML:Transition> |
表5
飞控系统提取到模块及交互关系"
| 序号 | 模块及交互关系 | 序号 | 模块及交互关系 | |
| 1 | IRU | 8 | LOE_REU(ACE3.output) | |
| 2 | AD | 9 | LIE_REU(ACE1.output,BCM.output) | |
| 3 | AOA | 10 | ROE_REU(ACE4.output) | |
| 4 | DMRS | 11 | RIE_REU(ACE2.output,BCM.output) | |
| 5 | SDS | 12 | UPR_REU(ACE3.output) | |
| 6 | Attitude | 13 | MDR_REU(ACE1.output,BCM.output) | |
| 7 | FSECU | 14 | LWR_REU(ACE4.output) | |
| 15 | LIA_REU(ACE1.output,BCM.output) | 30 | PFC1(IRU.output,AoA.output,AD.output, FSECU.output,Attitude.output) | |
| 16 | LOA_REU(ACE3.output) | |||
| 17 | RIA_REU(ACE2.output,BCM.output) | 31 | PFC2(IRU.output,AoA.output,AD.output, FSECU.output,Attitude.output) | |
| 18 | ROA_REU(ACE4.output) | |||
| 19 | LOE_PCU(LOE_REU.output) | 32 | PFC3(IRU.output,AoA.output,AD.output, FSECU.output,Attitude.output) | |
| 20 | LIE_PCU(LIE_REU.output) | |||
| 21 | ROE_PCU(ROE_REU.output) | 33 | ACE1(PFC1.output,PFC2.output,PFC3.output, SDS.output,DMRS.output) | |
| 22 | RIE_PCU(RIE_REU.output) | |||
| 23 | UPR_PCU(UPR_REU.output) | 34 | ACE2(PFC1.output,PFC2.output,PFC3.output, SDS.output,DMRS.output) | |
| 24 | MDR_PCU(MDR_REU.output) | |||
| 25 | LWR_PCU(LWR_REU.output) | 35 | ACE3(PFC1.output,PFC2.output,PFC3.output, SDS.output,DMRS.output) | |
| 26 | LIA_PCU(LIA_REU.output) | |||
| 27 | LOA_PCU(LOA_REU.output) | 36 | ACE4(PFC1.output,PFC2.output,PFC3.output, SDS.output,DMRS.output) | |
| 28 | RIA_PCU(RIA_REU.output) | |||
| 29 | ROA_PCU(ROA_REU.output) | 37 | BCM(ACE1.Mode,ACE2.Mode,ACE3.Mode,ACE4.Mode, ACE1.output,ACE2.output,ACE3.output. ACE4.output) |
表6
导致“左侧升降舵丧失控制”的最小割集(部分)"
| 序号 | 阶数 | 割集元素 |
| 1 | 2 | LOE_PCU_jam,LIE_PCU_jam |
| 2 | 2 | LOE_PCU_omission,LIE_PCU_jam |
| 3 | 2 | LOE_PCU_omission,LIE_PCU_omission |
| 4 | 2 | LOE_PCU_jam,LIE_PCU_omission |
| 5 | 2 | LOE_REU_stuck,LIE_REU_stuck |
| 6 | 2 | LOE_REU_omission,LIE_REU_stuck |
| 7 | 2 | ACE1_stuck,ACE3_stuck |
| 8 | 2 | ACE1_random,LOE_PCU_jam |
| 9 | 2 | ACE1_omission,LOE_PCU_omission |
| 10 | 2 | ACE1_random,LOE_REU_stuck |
| 11 | 2 | ACE1_stuck,LOE_REU_omission |
| 12 | 2 | ACE3_omission,LIE_REU_stuck |
| 13 | 3 | AoA_omisson,PFC1_mon_lane_stuck, LOE_PCU_jam |
| 14 | 3 | AoA_omission,PFC1_com_lane_random, LOE_PCU_jam |
| 15 | 3 | IRU_omission,PFC1_mon_lane_random, LOE_PCU_jam |
| 16 | 4 | ACE1_omission,ACE2_omission, ACE4_omission,BCM_stuck |
| 17 | 4 | ACE1_omission,ACE2_omission, ACE4_omission,BCM_random |
| 18 | 4 | ACE1_omission,ACE2_omission, ACE4_omission,BCM_omission |
| 19 | 5 | PFC1_com_lane_stuck,PFC2_com_lane_stuck, PFC3_com_lane_stuck,DMRS_omisson, FSECU_omisson |
| 20 | 5 | PFC1_com_lane_random,PFC2_mon_lane_stuck, PFC3_com_lane_stuck,DMRS_omisson, FSECU_omission |
| 1 | SAE ARP 4754B. Guidelines for development of civil aircraft and systems[S]. Warrendale: Society of Automotive Engineers, 2023. |
| 2 | SAE ARP 4761A. Guidelines and methods for conducting the safety assessment process on civil airborne system and equipment[S]. Warrendale: Society of Automotive Engineers, 2023. |
| 3 | JOSHI A, WHALEN M, HEIMDAHL M. Model based safety analysis final report, NASA contractor report[R]. Washington: NASA, 2006. |
| 4 | 胡晓义, 王如平, 王鑫, 等. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报, 2020, 41 (6): 147- 158. |
| HU X Y, WANG R P, WANG X, et al. Recent development of safety and reliability analysis technology for model-based complex systems[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (6): 147- 158. | |
| 5 | 陈磊, 焦健, 赵廷弟. 基于模型的复杂系统安全分析综述[J]. 系统工程与电子技术, 2017, 39 (6): 1287- 1291. |
| CHEN L, JIAO J, ZHAO T D. Review for model-based safety analysis of complex safety-critical system[J]. Systems Engineering and Electronics, 2017, 39 (6): 1287- 1291. | |
| 6 | LIU J T, WANG H W, ZHENG W. A safety modelling method for high-speed train control systems based on UML extension[C]// Proc.of the Chinese Automation Congress, 2020: 317−321. |
| 7 | SHAO N, ZHANG S G, LIANG H. Model-based safety analysis of a control system using Simulink and Simscape extended models[C]//Proc.of the 3rd International Conference on Mechanical, Electronic and Information Technology Engineering, 2017, 139: 00219. |
| 8 | KIRAN R, JEPPU Y. Autopilot mode transitions and voter logic validation using model checking: a design study of formal methods[C]//Proc.of the Smart Sensors Measurements and Instrumentation, 2021: 263−281. |
| 9 |
PECIAK M, SKARKA W. Assessment of the potential of electric propulsion for general a viation using model-based system engineering(MBSE)methodology[J]. Aerospace, 2022, 9 (2): 74- 96.
doi: 10.3390/aerospace9020074 |
| 10 | PING M L, ZHANG X B, GAO Z H, et al. Simulation model development of three-stage synchronous generator for aircraft power systems based on modelica[C]//Proc.of the 19th International Conference on Electrical Machines and Systems, 2016. |
| 11 |
SANNES P S, APVRILLE L, VINGERHOEDS R. Checking SysML models against safety and security properties[J]. Journal of Aerospace Information Systems, 2021, 18 (12): 906- 918.
doi: 10.2514/1.I010950 |
| 12 |
WOLNY S, MAZAK A, CARPELLA C, et al. Thirteen years of SysML: a systematic mapping study[J]. Software and Systems Modeling, 2020, 19 (1): 111- 169.
doi: 10.1007/s10270-019-00735-y |
| 13 | STEWART D, LIU J, COFER D, et al. AADL-based safety analysis using formal methods applied to aircraft digital systems[J]. Reliability Engineering & System Safety, 2021, 213, 107649. |
| 14 |
WEI X M, DONG Y W, LI X L, et al. Architecture-level hazard analysis using AADL[J]. Journal of Systems and Software, 2018, 137, 580- 604.
doi: 10.1016/j.jss.2017.06.018 |
| 15 | BOZZANO M, CIMATTI A, LISAGOR O, et al. Safety assessment of AltaRica models via symbolic model checking[J]. Science of Computer Programming, 2015, 98 (4): 464- 483. |
| 16 |
祁健, 胡军, 谷青范, 等. 一种AltaRica 3.0模型中类的平展化方法[J]. 计算机科学, 2021, 48 (5): 51- 59.
doi: 10.11896/jsjkx.200700184 |
|
QI J, HU J, GU Q F, et al. Class flattening method for AltaRica 3.0 model[J]. Computer Science, 2021, 48 (5): 51- 59.
doi: 10.11896/jsjkx.200700184 |
|
| 17 | 王少鹏. 基于时间自动机方法的SysML状态机图形式化建模与验证[D]. 上海: 华东师范大学, 2023. |
| WANG S P. Formal verification of SysML state machine: time automata approach[D]. Shanghai: East China Normal University, 2023. | |
| 18 | KAISER B, SODEN M, HEUERMANN N. A UAV case study on an MBSE workflow with integrated modular safety and reliability analysis[C]//Proc.of the Annual Reliability and Maintainability Symposium, 2024. |
| 19 | WANG Y P, WANG T T, LI X L, et al. Fault tree generation and analysis based on extended SysML model[C]//Proc.of the International Conference on High Performance Computing and Communication Engineering, 2024: 130730. |
| 20 |
荘露, 陆中, 张子文. 基于随机Petri网的机载系统动态可靠性建模[J]. 西北工业大学学报, 2020, 38 (4): 846- 854.
doi: 10.3969/j.issn.1000-2758.2020.04.020 |
|
ZHUANG L, LU Z, ZHANG Z W. Dynamic reliability model for airborne systems based on stochastic Petri net[J]. Journal of Northwestern Polytechnical University, 2020, 38 (4): 846- 854.
doi: 10.3969/j.issn.1000-2758.2020.04.020 |
|
| 21 | 张金辉, 赵滟, 毛寅轩, 等. 基于模型的可靠性、安全性分析方法[J]. 科技导报, 2024, 42 (8): 101- 110. |
| ZHANG J H, ZHAO Y, MAO Y X, et al. A survey of model-based reliability and safety analysis methods[J]. Science & Technology Review, 2024, 42 (8): 101- 110. | |
| 22 | ALMERAZ C N, LOPEZ-TERRAZAS R J, TSENG T L. A model-based systems engineering approach to obtain fault trees for failure analysis using SysML[C]//Proc.of the IEEE International Conference on Recent Advances in Systems Science and Engineering, 2021. |
| [1] | 戚亚群, 金平, 彭祺擘, 张海联, 蔡国飙. 基于模型的推进系统故障识别及建模方法[J]. 系统工程与电子技术, 2024, 46(12): 4062-4073. |
| [2] | 金鑫, 贺宇峰. 基于SysML的空间有效载荷测试路径自动生成方法[J]. 系统工程与电子技术, 2024, 46(10): 3416-3426. |
| [3] | 任浩亮, 张建超, 程会川. 基于SysML的武器装备体系能力需求建模分析方法[J]. 系统工程与电子技术, 2023, 45(9): 2843-2851. |
| [4] | 曹嘉平, 欧萌歆, 李易珊, 姜江, 李际超. 岛礁防空电子对抗装备体系构建与效能评估[J]. 系统工程与电子技术, 2023, 45(9): 2784-2792. |
| [5] | 黄冉, 彭祺擘, 武新峰, 倪庆. 基于DoDAF的载人登月体系结构建模[J]. 系统工程与电子技术, 2023, 45(7): 2131-2137. |
| [6] | 唐辰, 涂喜梅, 陆晓刚, 张琦, 张小贝. 基于四维混沌系统的改进AES图像加密算法[J]. 系统工程与电子技术, 2023, 45(12): 4040-4051. |
| [7] | 李耀华, 高源. 基于STPA-ANP模型的民机系统安全性分析[J]. 系统工程与电子技术, 2022, 44(9): 2986-2994. |
| [8] | 焦洪臣, 雷勇, 张宏宇, 张国斌, 王耀东. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43(9): 2516-2525. |
| [9] | 毕兴, 唐朝京. 基于模型检测的TLS协议实现库安全性分析[J]. 系统工程与电子技术, 2021, 43(3): 839-846. |
| [10] | 王雨农, 毕文豪, 张安, 詹超. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43(12): 3579-3585. |
| [11] | 柯宇航, 李艳军, 曹愈远, 张兴成. 基于模型的飞控系统安全性分析研究[J]. 系统工程与电子技术, 2021, 43(11): 3259-3265. |
| [12] | 王文浩, 毕文豪, 张安, 范秋岑. 基于MBSE的民机系统功能建模方法[J]. 系统工程与电子技术, 2021, 43(10): 2884-2892. |
| [13] | 赵长啸, 李浩, 董磊, 王鹏. 基于STPA-Bayes模型的机载平视显示系统安全性分析与评价[J]. 系统工程与电子技术, 2020, 42(5): 1083-1092. |
| [14] | 乔森, 黄志球, 王金永, 宛伟健. 基于统计模型检测的DFT定量分析方法[J]. 系统工程与电子技术, 2020, 42(2): 480-488. |
| [15] | 陈露, 焦健, 魏钱锌. 面向模型检查的NuSMV统一建模方法[J]. 系统工程与电子技术, 2018, 40(7): 1654-1659. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||