

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3699-3707.doi: 10.12305/j.issn.1001-506X.2025.11.18
• 系统工程 • 上一篇
收稿日期:2025-03-28
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
刘松涛
E-mail:2278404166@qq.com
作者简介:朱自强(2000—),男,硕士研究生,主要研究方向为电子对抗技术及应用基金资助:
Ziqiang ZHU1(
), Songtao LIU2,*, Ruihui PENG1
Received:2025-03-28
Online:2025-11-25
Published:2025-12-08
Contact:
Songtao LIU
E-mail:2278404166@qq.com
摘要:
针对传统效能评估时评估结果偏模糊、评估方法适应性差、评估指标难以定性定量等问题,提出基于Vague拓扑融合和改进博弈论的评估方法。该方法在合理构建评价指标体系的基础上,设计主观赋权法的模糊层次分析法与客观赋权法的准则重要性相关法进行改进博弈论的组合赋权,然后提出Vague拓扑融合理论,并建立综合评估模型。实例计算结果表明,该方法能较好地解决效能评估中的难点问题。所提方法可为雷达侦察系统效能评估提供较好的方法指引。
中图分类号:
朱自强, 刘松涛, 彭锐晖. 基于Vague拓扑融合和改进博弈论的雷达侦察系统作战效能评估[J]. 系统工程与电子技术, 2025, 47(11): 3699-3707.
Ziqiang ZHU, Songtao LIU, Ruihui PENG. Operational effectiveness evaluation of radar reconnaissance system based on Vague topology fusion and improved game theory[J]. Systems Engineering and Electronics, 2025, 47(11): 3699-3707.
表5
专家对各指标的Vague值评语"
| 准则层 | 指标层 | 优 | 良 | 一般 | 较差 | 差 |
| N1 | C11 | [0.4, 0.6] | [0.3, 0.5] | [0.1, 0.3] | [0.0, 0.2] | [0.0, 0.2] |
| C12 | [0.9, 0.9] | [0.1, 0.1] | [0.0, 0.0] | [0.0, 0.0] | [0.0, 0.0] | |
| C13 | [0.3, 0.5] | [0.3, 0.5] | [0.2, 0.4] | [0.0, 0.2] | [0.0, 0.2] | |
| C14 | [0.2, 0.3] | [0.3, 0.4] | [0.4, 0.5] | [0.0, 0.1] | [0.0, 0.1] | |
| N2 | C21 | [0.5, 0.6] | [0.3, 0.4] | [0.2, 0.3] | [0.0, 0.1] | [0.0, 0.1] |
| C22 | [0.2, 0.3] | [0.5, 0.6] | [0.3, 0.4] | [0.0, 0.1] | [0.0, 0.1] | |
| C23 | [0.3, 0.5] | [0.2, 0.4] | [0.2, 0.4] | [0.1, 0.3] | [0.0, 0.2] | |
| C24 | [0.2, 0.3] | [0.5, 0.6] | [0.2, 0.3] | [0.0, 0.3] | [0.0, 0.2] | |
| N3 | C31 | [0.1, 0.3] | [0.5, 0.7] | [0.2, 0.4] | [0.0, 0.2] | [0.0, 0.2] |
| C32 | [0.6, 0.6] | [0.3, 0.3] | [0.1, 0.1] | [0.0, 0.0] | [0.0, 0.0] | |
| C33 | [0.1, 0.2] | [0.2, 0.3] | [0.4, 0.5] | [0.2, 0.4] | [0.0, 0.1] |
表6
经拓扑融合处理后的专家对各指标的Vague值评语"
| 准则层 | 指标层 | 优 | 良 | 一般 | 较差 | 差 |
| N1 | C13 | [0.42, 0.59] | [0.28, 0.45] | [0.13, 0.3] | [0.0, 0.17] | [0.0, 0.17] |
| C12 | [0.72, 0.77] | [0.16, 0.21] | [0.07, 0.12] | [0.0, 0.05] | [0.0, 0.05] | |
| C13 | [0.36, 0.53] | [0.28, 0.45] | [0.19, 0.36] | [0.0, 0.17] | [0.0, 0.17] | |
| C14 | [0.3, 0.41] | [0.28, 0.39] | [0.31, 0.42] | [0.0, 0.11] | [0.0, 0.11] | |
| N2 | C21 | [0.42, 0.53] | [0.33, 0.44] | [0.21, 0.32] | [0.01, 0.14] | [0.0, 0.12] |
| C22 | [0.24, 0.35] | [0.45, 0.56] | [0.27, 0.38] | [0.01, 0.14] | [0.0, 0.12] | |
| C23 | [0.3, 0.47] | [0.27, 0.44] | [0.21, 0.38] | [0.07, 0.26] | [0.0, 0.18] | |
| C24 | [0.24, 0.35] | [0.45, 0.56] | [0.21, 0.32] | [0.01, 0.26] | [0.0, 0.18] | |
| N3 | C31 | [0.15, 0.32] | [0.45, 0.62] | [0.21, 0.38] | [0.02, 0.2] | [0.0, 0.17] |
| C32 | [0.5, 0.53] | [0.31, 0.34] | [0.14, 0.17] | [0.02, 0.06] | [0.0, 0.03] | |
| C33 | [0.15, 0.25] | [0.24, 0.34] | [0.35, 0.45] | [0.16, 0.34] | [0.0, 0.1] |
| 1 |
ZHANG C D, WANG L, JIANG R D, et al. Radar jamming decision-making in cognitive electronic warfare: a review[J]. IEEE Sensors Journal, 2023, 23 (11): 11383- 11403.
doi: 10.1109/JSEN.2023.3267068 |
| 2 | MATOUSEK Z, PERDOCH J, PACEK M, et al. Radar signal waveform based on Costas and Walsh-Hadamard codes as electronic counter‐countermeasure[J]. IET Radar, Sonar & Navigation, 2023, 17(6): 1023−1039. |
| 3 | LONGO G, MERLO A, ARMANDO A, et al. Electronic attacks as a cyber false flag against maritime radars systems[C]//Proc. of the IEEE 48th Conference on Local Computer Networks, 2023. |
| 4 |
ZHANG W X, MA D, ZHAO Z K, et al. Design of cognitive jamming decision-making system against MFR based on reinforcement learning[J]. IEEE Trans. on Vehicular Technology, 2023, 72 (8): 10048- 10062.
doi: 10.1109/TVT.2023.3261318 |
| 5 | BALLERI A, MATTHES D, MONTE L L, et al. Guest editorial: electronic attack and protection for modern radar systems and radar networks[J]. IET Radar, Sonar & Navigation, 2024, 18(11): 2077−2080. |
| 6 |
SHI L K, PEI Y, YUN Q J, et al. Agent-based effectiveness evaluation method and impact analysis of airborne laser weapon system in cooperation combat[J]. Chinese Journal of Aeronautics, 2023, 36 (4): 442- 454.
doi: 10.1016/j.cja.2022.11.006 |
| 7 |
CHEN Z W, ZHOU Z M, ZHANG L G, et al. Mission reliability modeling and evaluation for reconfigurable unmanned weapon system-of-systems based on effective operation loop[J]. Journal of Systems Engineering and Electronics, 2023, 34 (3): 588- 597.
doi: 10.23919/JSEE.2023.000082 |
| 8 | CHANG H Z, SUN S Z. Effectiveness evaluation of marine law enforcement unmanned aerial vehicle based on ADC model[C]//Proc. of the IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence, 2023. |
| 9 | BERROW D J, PARSONS M A, SHANE A, et al. Capability modeling for assessing mission effectiveness in surface ship concept and requirements exploration[J]. Naval Engineers Journal, 2023, 135 (3): 87- 106. |
| 10 |
SUN Q, LI H X, ZENG Y F, et al. Resilience-driven cooperative reconfiguration strategy for unmanned weapon system-of-systems[J]. Journal of Systems Engineering and Electronics, 2024, 35 (4): 932- 944.
doi: 10.23919/JSEE.2024.000088 |
| 11 | GAO F, ZHANG A, BI W H. Weapon system operational effectiveness evaluation based on the belief rule-based system with interval data[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39 (5): 6687- 6701. |
| 12 |
尹航, 李少洪, 李良驯. 侦察雷达效能模型研究[J]. 系统工程与电子技术, 2004, 26 (2): 206- 208.
doi: 10.3321/j.issn:1001-506X.2004.02.019 |
|
YIN H, LI S H, LI L X. Study of reconnaissance radar effect model[J]. Systems Engineering and Electronics, 2004, 26 (2): 206- 208.
doi: 10.3321/j.issn:1001-506X.2004.02.019 |
|
| 13 |
刘仕雷, 李昊. 改进ADC方法及其在武器装备系统效能评估中的应用[J]. 国防科技大学学报, 2017, 39 (3): 130- 135.
doi: 10.11887/j.cn.201703020 |
|
LIU S L, LI H. Modified ADC method and its application for weapon system effectiveness evaluation[J]. Journal of National University of Defense Technology, 2017, 39 (3): 130- 135.
doi: 10.11887/j.cn.201703020 |
|
| 14 |
胡昌栋, 滑楠, 杨琪, 等. 基于改进ADC法的高原信息通信装备作战效能评估[J]. 火力与指挥控制, 2021, 46 (8): 26- 33.
doi: 10.3969/j.issn.1002-0640.2021.08.005 |
|
HU C D, HUA N, YANG Q, et al. Operational effectiveness evaluation of information and communication equipment of plateau based on the improved ADC method[J]. Fire Control & Command Control, 2021, 46 (8): 26- 33.
doi: 10.3969/j.issn.1002-0640.2021.08.005 |
|
| 15 |
王中敬, 王昆, 李志斌, 等. 基于层次分析法复杂电磁环境下防空效能评估[J]. 现代防御技术, 2008, 36 (6): 28- 31.
doi: 10.3969/j.issn.1009-086X.2008.06.005 |
|
WANG Z J, WANG K, LI Z B, et al. Air defense efficiency evaluation under complicated electromagnetism environment based on analytical hierarchy process[J]. Modern Defence Technology, 2008, 36 (6): 28- 31.
doi: 10.3969/j.issn.1009-086X.2008.06.005 |
|
| 16 |
MON D L, CHENG C H, LIN J C. Evaluating weapon system using fuzzy analytic hierarchy process based on entropy weight[J]. Fuzzy Sets and Systems, 1994, 62 (2): 127- 134.
doi: 10.1016/0165-0114(94)90052-3 |
| 17 |
CHANG D Y. Applications of the extent analysis method on fuzzy AHP[J]. European Journal of Operational Research, 1996, 95 (3): 649- 655.
doi: 10.1016/0377-2217(95)00300-2 |
| 18 |
GREINER M A, FOULER J W, SHUNK D L, et al. A hybrid approach using the analytic hierarchy process and integer programming to screen weapon systems projects[J]. IEEE Trans. on Engineering Management, 2003, 50 (2): 192- 203.
doi: 10.1109/TEM.2003.810827 |
| 19 |
戚宗锋, 王华兵, 李建勋. 基于深度学习的雷达侦察系统作战能力评估方法[J]. 指挥控制与仿真, 2020, 42 (2): 59- 64.
doi: 10.3969/j.issn.1673-3819.2020.02.011 |
|
QI Z F, WANG H B, LI J X. Combat capability evaluation method based on deep learning for radar reconnaissance system[J]. Command Control & Simulation, 2020, 42 (2): 59- 64.
doi: 10.3969/j.issn.1673-3819.2020.02.011 |
|
| 20 |
REMENNIKOV A M, ROSE T A. Predicting the effectiveness of blast wall barriers using neural networks[J]. International Journal of Impact Engineering, 2007, 34 (12): 1907- 1923.
doi: 10.1016/j.ijimpeng.2006.11.003 |
| 21 |
邱日升, 潘继飞, 李为圣, 等. 基于Vague集ELINT系统的效能评估算法[J]. 火力与指挥控制, 2021, 46 (1): 62- 66.
doi: 10.3969/j.issn.1002-0640.2021.01.011 |
|
QIU R S, PAN J F, LI W S, et al. Effectiveness evaluation on algorithm ELINT system based on Vague sets[J]. Fire Control & Command Control, 2021, 46 (1): 62- 66.
doi: 10.3969/j.issn.1002-0640.2021.01.011 |
|
| 22 | 葛杨, 刘松涛. 基于指数标度层次分析法和Vague集的雷达导引头干扰效能评估[J]. 探测与控制学报, 2020, 42 (3): 69- 74. |
| GE Y, LIU S T. Radar seeker jamming effect evaluation based on exponential scale AHP and Vague set[J]. Journal of Detection & Control, 2020, 42 (3): 69- 74. | |
| 23 |
CHEN Y, LI B. Dynamic multi-attribute decision making model based on triangular intuitionistic fuzzy numbers[J]. Scientia Iranica, 2011, 18 (2): 268- 274.
doi: 10.1016/j.scient.2011.03.022 |
| 24 | YAN G Y. Assessment system for shipborne multi-source intelligence target fusion and track capability[C]//Proc. of the IEEE International Conference on Unmanned Systems, 2023. |
| 25 | 徐华志, 刘松涛, 冯路为. 基于Vague集和组合赋权的舰载雷达侦察系统作战效能评估[J]. 探测与控制学报, 2022, 44 (3): 97- 101. |
| XU H Z, LIU S T, FENG L W. Operational effectiveness evaluation of shipborne radar reconnaissance system based on Vague set and combined weighting[J]. Journal of Detection & Control, 2022, 44 (3): 97- 101. | |
| 26 |
SUN C C. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods[J]. Expert Systems with Applications, 2010, 37 (12): 7745- 7754.
doi: 10.1016/j.eswa.2010.04.066 |
| 27 |
PENG X D, GARG H. Intuitionistic fuzzy soft decision making method based on CoCoSo and CRITIC for CCN cache placement strategy selection[J]. Artificial Intelligence Review, 2022, 55 (2): 1567- 1604.
doi: 10.1007/s10462-021-09995-x |
| 28 |
MARDEN J R, SHAMMA J S. Game theory and control[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1 (1): 105- 134.
doi: 10.1146/annurev-control-060117-105102 |
| 29 | 李爱华. 岸边集装箱起重机安全评价方法研究[D]. 武汉: 武汉理工大学, 2017. |
| LI A H. Research on safety assessment methods of quayside container crane [D]. Wuhan: Wuhan University of Technology, 2017. | |
| 30 |
HONG D H, CHOI C H. Multicriteria fuzzy decision-making problems based on vague set theory[J]. Fuzzy Sets and Systems, 2000, 114 (1): 103- 113.
doi: 10.1016/S0165-0114(98)00271-1 |
| 31 | 邱日升, 潘继飞, 赵君, 等. 基于组合赋权的ELINT系统效能评估算法[J]. 现代雷达, 2020, 42 (8): 13- 18. |
| QIU R S, PAN J F, ZHAO J, et al. Efficient evaluation algorithm for ELINT system based on combination weighting[J]. Modern Radar, 2020, 42 (8): 13- 18. |
| [1] | 孙文, 程娟, 王一豪, 曹开臣, 葛萌萌, 黄刘, 张耿. 高光谱卫星舰船目标检测效能分析与建模研究[J]. 系统工程与电子技术, 2025, 47(5): 1432-1442. |
| [2] | 陈顶, 方志耕, 杨保华, 叶丰, 张娜, 张靖如. 考虑指标协同效应重构的联合作战体系效能评估灰色主成分模型[J]. 系统工程与电子技术, 2025, 47(5): 1561-1574. |
| [3] | 袁彰求, 杨朝旭, 荣海军. 面向定性与定量指标的轻量化高空飞艇效能评估方法[J]. 系统工程与电子技术, 2025, 47(3): 817-826. |
| [4] | 韩维, 郭放, 刘玉杰, 苏析超, 刘洁. 基于三角模糊数作战环的航母编队作战效能评估方法[J]. 系统工程与电子技术, 2025, 47(3): 893-903. |
| [5] | 郑丽莎, 尹东亮, 王旋. 基于改进D-S证据理论的相控阵雷达作战效能评估[J]. 系统工程与电子技术, 2024, 46(4): 1330-1336. |
| [6] | 马力, 师鹏, 陈宇, 李文龙. 天基信息支援体系离散事件仿真与效能评估[J]. 系统工程与电子技术, 2024, 46(3): 906-913. |
| [7] | 胡涛, 申立群, 朱镜达, 孙成会, 董伟锋. 基于FAST和Sobol指数法的雷达系统效能敏感性分析[J]. 系统工程与电子技术, 2024, 46(2): 561-569. |
| [8] | 陈宇, 师鹏, 马力, 李文龙. 天基信息支援体系建模与效能评估方法[J]. 系统工程与电子技术, 2024, 46(10): 3407-3415. |
| [9] | 曹嘉平, 欧萌歆, 李易珊, 姜江, 李际超. 岛礁防空电子对抗装备体系构建与效能评估[J]. 系统工程与电子技术, 2023, 45(9): 2784-2792. |
| [10] | 浣顺启, 方哲梅, 王剑波. 基于功能依赖网的体系效能评估方法[J]. 系统工程与电子技术, 2022, 44(7): 2191-2200. |
| [11] | 蔺向阳, 邢清华, 刘付显. 针对要点防空模型的作战兵力优化研究[J]. 系统工程与电子技术, 2022, 44(3): 921-928. |
| [12] | 邱禄芸, 方志耕, 陶良彦, 陶秋澄. 网络体系效能评估改进FDNA模型[J]. 系统工程与电子技术, 2022, 44(12): 3728-3737. |
| [13] | 潘星, 张振宇, 张艳梅, 王冉冉. 基于Sobol敏感性分析的装备体系保障效能评估[J]. 系统工程与电子技术, 2021, 43(2): 390-398. |
| [14] | 高昂, 郭齐胜, 董志明, 杨绍卿. 基于EAS+MADRL的多无人车体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43(12): 3643-3651. |
| [15] | 杨圩生, 王钰, 杨洋, 唐亮. 基于作战环的不同节点攻击策略下的作战网络效能评估[J]. 系统工程与电子技术, 2021, 43(11): 3220-3228. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||