系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3685-3698.doi: 10.12305/j.issn.1001-506X.2025.11.17

• 系统工程 • 上一篇    

空间碎片多次观测的多卫星调度方法

王大力1,2(), 董磊1,2,*, 李华旺1,2, 郑珍珍1,2, 胡海鹰1,2   

  1. 1. 中国科学院微小卫星创新研究院,上海 201304
    2. 中国科学院大学,北京 100049
  • 收稿日期:2025-03-12 出版日期:2025-11-25 发布日期:2025-12-08
  • 通讯作者: 董磊 E-mail:wang61254@163.com
  • 作者简介:王大力(1993—),男,博士研究生,主要研究方向为卫星任务规划
    李华旺(1973—),男,研究员,博士,主要研究方向为数字信号处理、信号检测和识别技术、计算机科学与技术、信息处理技术
    郑珍珍(1984—),女,研究员,博士,主要研究方向为遥感卫星总体设计、卫星任务效能分析、光学图像处理
    胡海鹰(1977—),男,研究员,博士,主要研究方向为空间态势感知与安全体系设计

Multi-satellite task scheduling method for repeated observation of space debris

Dali WANG1,2(), Lei DONG1,2,*, Huawang LI1,2, Zhenzhen ZHENG1,2, Haiying HU1,2   

  1. 1. Innovation Academy for Microsatellites of Chinese Academy of Sciences,Shanghai 201304,China
    2. University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2025-03-12 Online:2025-11-25 Published:2025-12-08
  • Contact: Lei DONG E-mail:wang61254@163.com

摘要:

针对多个卫星对多个空间目标在一定时间区间内的多次观测规划问题,提出一种多种群遗传邻域搜索算法(multi-population genetic neighborhood search algorithm,MPGNSA)。首先,考虑卫星观测能力与空间目标观测需求,以目标的观测频次与观测时间在观测周期内收益最大化为设计方向。其次,分析卫星任务规划的约束条件,建立卫星对于空间目标观测任务规划模型。此外,在整体上采用多种群并行进化的方式,在各种群的进化过程中,建立编码方式与启发式规则,保证基因的高适应度,并引入邻域搜索的思想,提升算法收敛速度。最后,仿真结果表明,MPGNSA在任务规划中能够获得较其他对比算法更高的最终适应度;在相同的计算时间限制下,MPGNSA的适应度高于其他对比算法。MPGNSA在提高任务收益和优化调度效率方面具有明显优势,在有限的计算时间内能够提供更高效的解决方案。

关键词: 卫星任务规划, 多星协同, 多种群进化, 遗传算法, 邻域搜索

Abstract:

Aiming at the problem of scheduling repeated observations of multiple space targets by multiple satellites within a given time period, a multi-population genetic neighborhood search algorithm (MPGNSA) is proposed. Firstly, taking into account the observation capabilities of satellites and the observation requirements of targets, the design direction is to maximize the benefits of the observation frequency and time of the target in the observation cycle. Then, the constraints of satellite task scheduling and develop a planning model for satellite-based observation of space targets are analyzed. In addition, a parallel evolutionary approach across multi-population is adopted, an encoding scheme and heuristic rules are employed during the evolution process to ensure high-fitness individuals, while a neighborhood search mechanism is introduced to enhance convergence speed. Finally, simulation results show that MPGNSA achieves higher final fitness compared to other algorithms. Under the same computational time constraints, MPGNSA also yields higher task benefits than other algorithms. It can be concluded that MPGNSA has significant advantages in improving task fitness and optimizing scheduling efficiency, offering more efficient solutions within limited computational time.

Key words: satellite mission planning, multi-satellite collaboration, multi-population evolution, genetic algorithm, neighborhood search

中图分类号: